Heptares solves first X-ray structure of Family B GPCR, but full details not yet public
Sep17

Heptares solves first X-ray structure of Family B GPCR, but full details not yet public

In what might be the year's biggest molecular teaser, Heptares Therapeutics has announced that it has solved the first X-ray crystal structure of a G-protein coupled receptor in the Family B subclass. The work provides the first structural insights into a protein family that includes sought-after drug targets such as GLP-1 for diabetes and CGRP for migraine. Largely because of that drug discovery relevance, however, Heptares is choosing to keep its structure somewhat close to the vest. Officials presented views of the structure, of a GPCR called Corticotropin Releasing Factor (CRF-1) receptor, at conferences on Friday and Monday. But Heptares CEO Malcolm Weir says his team has no immediate plans to publish the structure or to deposit coordinates into the repository known as the Protein Data Bank. The structure, Weir says, is another success for Heptares' GPCR stabilizing technology, StaR. The technique involves targeted mutations that help to trap a GPCR in a single biologically-relevant state. In the case of CRF-1, Weir says, the stabilized receptor is captured in the "off" state. The structure itself, which is at a resolution of 3 Ångstroms, has the 7-helix membrane-spanning structure typical of GPCRs. However, CRF-1's architecture is rather different from receptors in Family A, the only GPCR family for which X-ray structures had been available until now, Weir says. "The overall shape of the receptor looks different, the orientation of the helices looks different, and there are detailed differences within helices that are at analogous positions in Family A receptors," he says. He notes that there are differences in helices 6 and 7, which undergo important motions during GPCR activation. "This is an important breakthrough, although fine details of the structure and release of coordinates may still be some time away," says Monash University's Patrick Sexton, an expert in Family B GPCRs who was at Friday's talk. The structure, he says, confirmed researchers' expectations that the major differences in membrane-spanning helices between Family A and Family B receptors would occur on the extracellular side. "There was a very open and relatively deep extracellular binding pocket, with the receptor having a 'V' shaped appearance," he says. This open pocket likely contributes to medicinal chemists' difficulties obtaining high affinity small molecule ligands for Family B receptors, he suggests. That open pocket might be involved in another Family B GPCR mystery, according to Roger Sunahara, also in attendance Friday, who studies GPCRs' molecular mechanisms at the University of Michigan, Ann Arbor. All Family B GPCRs, including CRF-1, have a large domain at their amino-terminus that contains large portions of their ligand binding sites. That domain was not included in this structure, he says, but...

Read More
Liveblogging First-Time Disclosures From #ACSSanDiego
Mar24

Liveblogging First-Time Disclosures From #ACSSanDiego

Watch this space on Sunday as I cover the public unveiling of five drug candidates' structures. I’ll be liveblogging the “First Disclosures of Clinical Candidates” symposium at the San Diego ACS National Meeting, which runs from 2PM to 5PM Pacific. 1:30PM It's half an hour before the start of the session and the big ballroom is still pretty empty. Expect that to change in short order. 2:30PM LX4211 Company: Lexicon Pharmaceuticals Meant to treat: type 2 diabetes Mode of action: dual inhibitor of sodium glucose transporters 1 and 2, which play key roles in glucose absorption in the gastrointestinal tract and kidney Medicinal chemistry tidbits: this drug candidate had Lexicon's chemists refamiliarizing themselves with carbohydrate chemistry. Most inhibitors of sodium glucose transporters incorporate D-glucose in some way. Lexicon's chemists realized they could try something different-- inhibitors based on the scaffold of L-xylose, a non-natural sugar. The team has already published a J. Med. Chem paper (2009, 52, 6201–6204) explaining that strategy. LX4211 is a methyl thioglycoside-the team went with a methyl thioglycoside because upping the size too far beyond a methyl lost activity at SGLT1. Status in the pipeline: LX4211 is currently completing Phase IIb trials. 3:00PM BMS-927711 Company: Bristol-Myers Squibb Meant to treat: migraine Mode of action: antagonist of the receptor for calcitonin gene-related peptide- increased levels of this peptide have been reported in cases of migraine Medicinal chemistry tidbits: This team recently published an orally bioavailable CGRP inhibitor, BMS-846372 (ACS Med. Chem. Lett., DOI: 10.1021/ml300021s). However, BMS-846372 had limited aqueous solubility, something that might make its development challenging. To improve that solubility, the BMS team sought to add polar groups to their molecule, something that's been tough to do with CGRP inhibitors historically. In the end, the team managed to add a primary amine to BMS-846372's cycloheptane ring while maintaining CGRP activity, leading to BMS-927711. Status in the pipeline: Phase II clinical trials 3:05 lots of questions from the audience for this talk! One questioner notes (as was noted in talk) that 4 CGRP inhibitors had gone before this drug in the clinic, and not made it through. Speaker notes that this candidate is more potent than others at CGRP (27 picomolar). 3:53 We're a bit behind schedule but got plenty of good chemistry... GSK2636771 Company: GlaxoSmithKline Meant to treat: tumors with loss-of-function in the tumor suppressor protein PTEN (phosphatase and tensin homolog)- 2nd most inactivated tumor suppressor after p53- cancers where this is often the case include prostate and endometrial Mode of action: inhibitor of phosphoinositide 3-kinase-beta (PI3K-beta). Several lines of evidence suggest that proliferation in certain PTEN-deficient tumor cell lines is driven primarily by PI3K-beta....

Read More