Haystack 2011 Year-in-Review
Jan03

Haystack 2011 Year-in-Review

Well, 2011 is in the books, and we here at The Haystack felt nostalgic for all the great chemistry coverage over this past year, both here and farther afield. Let’s hit the high points: 1. HCV Takes Off – New treatments for Hepatitis C have really gained momentum. An amazing race has broken out to bring orally available, non-interferon therapies to market. In October, we saw Roche acquire Anadys for setrobuvir, and then watched Pharmasset’s success with PSI-7977 prompt Gilead’s $11 billion November buyout.  And both these deals came hot on the heels of Merck and Vertex each garnering FDA approval for Victrelis and Incivek, respectively, late last spring. 2. Employment Outlook: Mixed – The Haystack brought bad employment tidings a few times in 2011, as Lisa reported. The “patent cliff” faced by blockbuster drugs, combined with relatively sparse pharma pipelines, had companies tightening their belts more than normal. Traffic also increased for Chemjobber Daily Pump Trap updates, which cover current job openings for chemists of all stripes. The highlight, though, might be his Layoff Project.  He collects oral histories from those who’ve lost their jobs over the past few years due to the pervasive recession and (slowly) recovering US economy.. The result is a touching, direct, and sometimes painful collection of stories from scientists trying to reconstruct their careers, enduring salary cuts, moves, and emotional battles just to get back to work. 3. For Cancer, Targeted Therapies – It’s also been quite a year for targeted cancer drugs. A small subset of myeloma patients (those with a rare mutation) gained hope from vemurafenib approval. This molecule, developed initially by Plexxikon and later by Roche / Daiichi Sankyo, represents the first success of fragment-based lead discovery, where a chunk of the core structure is built up into a drug with help from computer screening.From Ariad’s promising  ponatinib P2 data for chronic myeloid leukemia, to Novartis’s Afinitor working in combination with aromasin to combat resistant breast cancer. Lisa became ‘xcited for Xalkori, a protein-driven lung cancer therapeutic from Pfizer. Researchers at Stanford Medical School used GLUT1 inhibitors to starve renal carcinomas of precious glucose, Genentech pushed ahead MEK-P31K inhibitor combinations for resistant tumors, and Incyte’s new drug Jakifi (ruxolitinib), a Janus kinase inhibitor, gave hope to those suffering from the rare blood cancer myelofibrosis. 4. Sirtuins, and “Stuff I Won’t Work With  – Over at In the Pipeline, Derek continued to chase high-profile pharma stories. We wanted to especially mention his Sirtris / GSK coverage (we had touched on this issue in Dec 2010). He kept up with the “sirtuin saga” throughout 2011, from trouble with duplicating life extension in model organisms to the...

Read More
ARIAD Presents PACE Data; Provides Potential Gleevec Backup
Dec15

ARIAD Presents PACE Data; Provides Potential Gleevec Backup

Sufferers of chronic myeloid leukemia (CML), a rare and tough-to-treat blood cancer, received some good news at the 2011 American Society of Hematology meeting in San Diego this week. On Monday, ARIAD Pharmaceuticals disclosed new results from the Phase 2 PACE trial of its lead drug ponatinib (AP24534). The data (covered by FierceBiotech, Xconomy, and TheStreet), indicate major responses to the drug in ~40% of recipients, even in advanced or refractory (resistant to treatment) CML . With these numbers in hand, ARIAD enters a tight race, already populated by headliners like Gleevec (imatinib), which in 2001 made a splash as a first-line CML therapy. Drugs such as Gleevec and ponatinib belong to the family of tyrosine kinase (TK) inhibitors, which dock with a mutated protein called Bcr-Abl. This protein (actually a fusion of two distinct proteins via a chromosomal mishap) triggers disease by accelerating blood cell creation, leading to uncontrolled growth and eventually CML. Since cancers constantly evolve, new mutations in the TK active site had rendered Gleevec ineffective for certain variations of CML. Many of the PACE trial patients had previously tried newer TK inhibitors, such as Sprycel (dasatinib, BMS) and Tasigna (nilotinib, Novartis), and found that their CML had become resistant due to a single amino acid mutation in the kinase active site, which swapped a polar residue (threonine) for a carbon chain (isoleucine). So, ARIAD chemists decided to develop a drug that borrowed the best points from the earlier therapies, but capitalized on this mutation (A pertinent review in Nature Chemical Biology covers early examples of “personalized” cancer drugs developed for disease variants). So, how did they accomplish this particular act of molecular kung-fu?  For that, we hit up the literature and go all the way back to . . . 2010. As explained in a development round-up (J. Med. Chem., 2010, 53, 4701), most approved Bcr-Abl inhibitors share several traits: densely-packed nitrogen heterocycles linked to a toluyl (methyl-phenyl) amide, then a highly polar end group, such as piperazine or imidazole. Since the mutation axed a threonine residue, the hydrogen-bond donor adjacent to the ring in earlier drugs was no longer necessary. So, chemists replaced it with a vinyl group. A computer analysis designed to achieve better binding and drug-like properties suggested an alkyne linker might fit into the mutated active site even better than a vinyl group, so that’s ultimately what ARIAD installed. The program also suggested moving an exocyclic amino group into the aromatic (forming an uncommon imiadzo-[1,2-b]-pyridazine, green in picture). Borrowing the best stuff from other therapies, ARIAD’s chemists also wove in the “flipped” amide and -CF3 motifs (both blue) from nilotinib, as well as the methylpiperazine...

Read More