LanzaTech: Now experimenting with CO2

It's not too often that I get a press release with a New Zealand embargo time. Waste gas to fuels and chemicals firm LanzaTech got its start in New Zealand, but is currently headquartered in Illinois. Still, the company's larger projects are all in Asia, and being on the opposite side of the world from Cleantech Chemistry blog HQ is not a problem for them. Yesterday (which is today in New Zealand), LanzaTech CEO Jennifer Holmgren spoke to a conference of oil refiners in New Delhi. In her remarks, she announced that the firm has a new joint development agreement with Malaysia's national oil company Petronas. The two firms will work to produce chemicals from carbon dioxide - the first one being acetic acid. LanzaTech already has two facilities that make ethanol from CO. In all cases, the CO or CO2 comes from waste gases. LanzaTech's proprietary microbes ferment the gas into various end products. The Petronas deal will get its CO2 from refinery off gases and natural gas wells. Earlier this year, the venture arm of Petronas contributed to LanzaTech's third round of venture funding. And it seems the two companies have been in cahoots ever since. C&EN profiled LanzaTech this summer. And there is another cleantech firm that aims to make acetic acid - Zeachem. Zeachem is building out its plant that will produce acetic acid - as well as ethanol - from hybrid poplar grown in...

Read More

SoloPower, Gevo: Can a capital-light strategy save cleantech?

I wish I could be in Portland, Oregon today to watch SoloPower start up its first production line of thin film CIGS solar panels. The company says it can manufacture in a continuous process to make its solar material in strips as long as one mile. The company asserts that its thin, flexible modules are a good fit for building-integrated solar, especially in locations where heavier, traditional glass panels cannot be installed such as on warehouse roofs. The modules are certified to an efficiency rate of 9.7 to 12.7%. But it’s not so much the technology itself that is interesting, but rather SoloPower’s business model and whether it can succeed in selling what it admits is a premium-priced product while the traditional silicon modules continue to drop in price, taking down many efficient producers with them. SoloPower is already having to bear up under scrutiny because it will be able to tap into almost $200 million in DOE loan guarantees, under the same program that was behind the Solyndra kerfuffle. NPR did a nice job this morning interrogating SoloPower CEO Tim Harris. Read or listen to the short piece here. NPR rightly points out that Solyndra was backed by $1 billion in private funding and accessed half a billion dollars in its own DOE loan before going bankrupt. But SoloPower doesn’t have a billion bucks to lose, and perhaps that is a good thing. Instead of comparing SoloPower to Solyndra I’d like to compare it to Gevo, a maker of biobased isobutyl alcohol (what it calls isobutanol). Both firms are pursuing a capital-light strategy. SoloPower’s first production line will have a small eventual annual capacity of 100 MW. So far, it has spent only its own investors’ dollars. Gevo, a now public company, is spending somewhere around 25% to one-third the cost of a new fermentation plant by converting existing corn ethanol plants. When a company that has a technology without a track record wants to build its first large plant, it faces financing risk on top of technology risk. Range Fuels built a shiny new plant in Georgia to make ethanol from wood chips. But since the technology did not work upon start-up, Range could not pay its monthly loan overhead, and the factory was repossessed by its financing bank and sold at auction (Range also had a DOE loan guarantee). Early this week, Gevo told investors that it had stopped making isobutyl alcohol at its facility in Luverne, Minnesota. Instead, it turned the switch back to ethanol. Gevo’s plan to convert an ethanol plant in Redmond, South Dakota is on hold. The company said though it successfully...

Read More

Battery Start-up Gets New Name

Liquid Metal Battery Corporation now has a new name - Ambri. I have to admit, since I track a number of cleantech start-ups, I had a fondness for LMBC partly because the name was so descriptive of the technology. It helps when my memory gets a little faulty. The researcher and founder of Ambri, Donald Sadoway, is profiled in C&EN's very recent cover package about Entrepreneurs in Chemistry. I enjoyed Sadoway's story very much. As C&EN's Amanda Yarnell points out in the story, though he is an expert in materials, Sadoway and his team are not experts in the battery industry. Their outside perspective helped the team come up with a cheaper method to store intermittent, renewable energy. But I will miss the old name. The press release says Ambri comes from a snippet of Cambridge, home of MIT. Maybe Liquid Metal Battery Corp was considered too long, or perhaps too, er,...

Read More
The Money in Dirt
Apr19

The Money in Dirt

Cleantech firms are sometimes criticized for pie in the sky thinking. Harvest Power, though, looks like a pretty down to earth company. It makes dirt*. Mind you, this is high quality dirt*. Late last week, Harvest Power said it had raised $110 million in a third round of venture capital funding. That's a tidy sum for a messy business. Harvest is an industry that some call "organics management." According to the firm's website, it works at a community level to gather and re-use organic materials (food waste, lawn clippings, pieces of lumber). It produces mulches, organic fertilizer, and soil products using composting and anareobic digestion. These technologies are not exactly new. But it seems that the value is in its system approach and its facilities. Harvest ties into local communities where organic materials are separated from the waste stream. In addition to recyling the waste into soil-related products - which it sells to local farmers and gardeners - its digestors produce renewable energy from biogas. The biogas is used in combined heat and power plants, exported as pipeline-grade (i.e. purified methane) natural gas, or compressed gas to be used for transportation. High heat content materials like wood chips are also processed into fuel for use in industrial boilers. According to PrivCo, a firm that tracks the finances of privately-held companies, Harvest can boast significant revenues (this contrasts the firm with some cleantech plays that go public before making any money from sales). Founded in 2008, it made close to $50 million last year and is expected to rake in $75-$100 million in 2012. The financing will be used by the company to expand its reach. PrivCo reports Harvest is finishing two Canadian energy plants and has plans for waste to energy facilities in New Jersey and Florida. * [update] Harvest actually produces soil, as The Phytophactor points out in his comment.  ...

Read More

Qteros Regroups

Last Friday, press reports began to circulate that cellulosic ethanol start-up Qteros had fired its CEO John McCarthy, laid off a bunch of staff, and may be for sale. I was intrigued as I had written a bit about the company in the past, and realized, in retrospect, that I hadn't heard much about it lately. In fact, it appears that Qteros is in a bit of a huddle and may change the scope of its future plans. I asked the new CEO, Mick Sawka, formerly the company's senior vice president of engineering and commercial development if he could update me. By e-mail he replied that "Qteros has reduced its staff and John McCarthy has stepped down as CEO. ... Based on our data and that of our strategic partner, Praj Industries, we remain confident that we have one of the best process and economic routes to cellulosic ethanol production. Under our new leadership we continue to develop our process." Praj Industries is an Indian firm focused on engineering for biobased ethanol. It wants to expand into cellulosic feedstocks. The partnership was announced early in January, just a day before the firm disclosed it had raised $22 million in the first part of a C round of venture capital funding. At that time, the firm implied it planned to get more investments and proceed to commercialization. It sounds like the scope of the firm's plans may have narrowed a bit. Cleantech Chemistry will keep an ear out for more information. I wrote about Qteros' former CEO John McCarthy back in February of 2010, when he had just taken the helm. Two other firms, Mascoma (also in cellulosic ethanol) and Segetis (in bio-based chemicals) had brand new CEOs at the same time. In all three cases, the new CEO's were experienced hands who were brought in to guide the biobased firms to commercialization. Qteros is not the only one of the three that has been quiet this year. Segetis' most recent press release came out Feb. 14 and is about a deal with Method (a household cleaner firm) to develop a tub and tile cleaner made from bio-based molecules. Meanwhile, in September, Mascoma filed for an IPO worth up to $100 million - though it has not yet begun selling stock. Both firms have the same CEOs as they did when I wrote about them in 2010 -  Atul Thakrar is at Segetis and William J. Brady is still in charge at Mascoma....

Read More

Epic Fail: Solyndra files for bankruptcy

While you were at lunch, the nascent cleantech manufacturing industry in the U.S. collapsed. Actually, that's not quite true, but it is true that Solyndra will file for bankruptcy. This is a big deal - Google News lists 85 news outlets covering the story. Solyndra is famous for its stylish, glass tubular, CIGS-powered, solar rooftop modules. And for raising vast amounts of venture capital. And for getting a $535 million Department of Energy loan guarantee. And for filing for, and later cancelling, a planned IPO in late 2009. Solyndra's success in raising money was an early indicator that venture capitalists had turned to so-called cleantech industries, taking some of the shine off of internet and technology-based start-ups. It was the first company to benefit from the DOE's loan program, part of the 2005 Energy Act. But cleantech -- particularly solar -- has been looking a bit less shiny lately. Earlier this month, Evergreen Solar filed for bankruptcy protection, and its filing shows that the firm does not plan to emerge in anything like its current form. Evergreen also received government largess, getting more than $50 million in support from the state of Massachusetts. Both Solyndra and Evergreen had proven technologies and they had the financial resources to scale up their manufacturing. Compared to many segments of cleantech, this sounded like a pretty good risk for investors. However, both technologies were based, at least in part, on solar module designs that minimized the use of polysilicon. That was smart at the time, because polysilicon supplies were very tight, and shortages threatened to choke the life out of (traditional) solar manufacturing. That was back in 2007-8. But by the end of 2008, chemical makers made plans to ramp up their manufacturing of polysilicon. The stuff was fetching record prices, after all, and it's made from sand. Beginning in 2009, polysilicon manufacturers like Hemlock Semiconductor (owned in part by Dow Corning) and Wacker Chemie began doubling, tripling, quadrupling etc their polysilicon capacity. Billion dollar plus-sized polysilicon plants in the US also won government support. By late 2009 there was an overabundance of polysilicon and an oversupplyof modules in inventory, crushing prices. Firms like Solyndra and Evergreen had raised money and started scaling up manufacturing right as solar modules became a commodity. Chinese manufacturers at that point had their eye on making solar modules for close to $2 per watt. It was not a good time to have a technologically distinct - and more expensive - solar product. In 2010-2011, European countries - especially Spain - cut back on solar subsidies. Germany has trimmed them as well. All solar makers were busy cutting costs...

Read More