Selling it: Making chemicals from CO2

Cleantech start-up Liquid Light is hitting the road to market its catalytic technology that takes in CO2 to make chemicals. C&EN science reporter Mitch Jacoby included the company in his July 1 feature about methods to use electrochemistry to convert CO2 to valuable products.

Earlier this week, the company announced that it now has a lab scale prototype and is targeting production of ethylene glycol (MEG – with the M for “mono”). MEG is commonly known to consumers as antifreeze, but the bulk of it is used as an intermediate chemical in the production of polyester and PET resins. Shell Chemicals is a leader in MEG production with its own OMEGA catalytic process.

Liquid Light

The prototype electrochemical cell is coffee-table sized. Credit: Liquid Light

C&EN spoke with Liquid Light’s CEO Kyle Teamey while he was at the airport. Teamey is calling on potential licensees who may be interested in investing in the firm’s next step: a larger, real-world installation to further demonstrate the technology. The firm currently has backing from VantagePoint Capital Partners, BP Ventures, Chrysalix Energy Venture Capital, and Osage University Partners.

The following is a lightly edited Q&A.

CC: What sources and types of CO2 streams are you targeting?

KT: The idea is to use industrial point sources of CO2, ideally one that is located in an existing chemical production area, petrochemical plant, or refinery site. In terms of cost structure, we assume the cost that is associated with using conventional carbon capture technology. Estimates from those technology providers have led us to assume $80 per ton, though it can range wildly between $5-150. We want pipeline grade CO2, relatively pure but not completely squeaky clean.

Still, we have a stable catalyst for making a lot of different chemicals, there are chemicals that can be made with very impure CO2, that includes SOx, NOx, oxygen, CO, and mercury. We’re not going to hook the thing up to a coal fire power plant, but there are opportunities out there.

CC: What would be the source of hydrogen?

KT: Customers would be able to use the lowest cost hydrogen available on market, like from dereforming of methane, or unconventional ones like water electrolysis. Ultimately we want to provide technology for customers to reach whatever goals they have – they could even set up at a remote site to use CO2.

CC: How did you come to lead this effort at Liquid Light?

KT: I was an entrepreneur in residence with a venture capital fund – I came in with the intent on starting this company. I’m more like a utility infielder than a pinch hitter.

CC: Who are you speaking with now to advance the technology, and what kind of reception are you getting as a tech start-up?

KT:There is still a lot of interest from the petrochemical industry in new carbon feedstocks. Particularly something, in the case of CO2, that is low cost. With a captive industrial point source, there is no price volatility of that input.

You can configure the process in such a way that you significantly reduce the carbon footprint of manufacturer, to help hit economic and environmental goals simultaneously. Most manufacturers look at this from an economic standpoint.We have a lot of people excited about the MEG process, other groups are interested in other chemicals aside from MEG. That’s why I’m at the airport this morning.

CC: How big is your lab prototype and what scale are you ultimately targeting?

KT: It’s coffee-table sized. The prototype weighs a lot. Ultimately we would go to world-scale size for the product we are making. With the electrochemical technology, you scale up by stacking. You can make smaller amounts of specialty chemicals or build out for larger market chemicals like MEG.

CC: What is it like to be involved at a start-up at this point in the process?

KT: The opportunity to bring a new chemical feedstock online is lots of fun – there is a lot of excitement. It is still a relatively early-stage company, but from a job perspective, I’ve found nothing is more satisfying than taking something from a concept to a reality. It has been really exciting to watch these things move into beaker scale a few years ago and then to lab scale. And now I can’t wait to get to the next scale.

Author: Melody Bomgardner

Share This Post On

1 Comment

  1. Hello Melody

    We’ve corresponded before. “Mother knows best” and by “Mother” I mean Mother Nature, who has invented the most efficient way to make chemicals from carbon dioxide. It’s called photosynthesis and its most productive practitioner is algae. Let’s invest in finding ways to purposefully grow, harvest and separate them.