↓ Expand ↓
» About This Blog

Formate, hydrogen gas, and nitrous oxide

Greetings from San Diego! I heard some great new safety training ideas in yesterday’s CHAS session on “It’s not all about PowerPoint,” and I’ll share them next week when I’ve got more time to write. In the meantime, today’s issue of C&EN includes a follow-up letter on the NO/methanol explosion reported from Merck in January:

A safety letter from Merck & Co. chemists titled “Nitric Oxide at High Pressure” (C&EN, Jan. 30, page 6) described two explosions during depressurization of a reaction between NO and methanol under basic conditions. The products in a model system with sodium methoxide were described as nitrous oxide and formic acid, presumably as sodium formate. A potential danger in this system should be pointed out: Sodium formate undergoes thermal decomposition to give hydrogen gas (J. Am. Chem. Soc., DOI: 10.1021/ja02245a004), which explodes spontaneously in the presence of nitrous oxide above critical limits (J. Am. Chem. Soc., DOI: 10.1021/ja01179a036), even in the absence of a catalyst or source of ignition.

The presence of hydrogen and nitrous oxide above a reaction mixture was undoubtedly the cause of an explosion and fire in my laboratory in 1981 during workup of a reaction between sodium and nitric oxide. The major product of the reaction is cis-sodium hyponitrite, which decomposes immediately in water to form sodium hydroxide and nitrous oxide. The employee, a biology major who was badly burned, had carried out the reaction a number of times without incident. This time he tried twice and failed to disperse about 30 g of sodium in toluene and, without consulting me, decided to continue the reaction. The explosion occurred as he was attempting to destroy the unreacted sodium, a lump too large to remove from the flask, by dropwise addition of water.

Most of the sodium had reacted at the time of the explosion, and there was no indication of mechanical failure. At the time, I was unaware of the extreme incompatibility of the two gases, and the accident was extremely puzzling. The reaction mixture was close to room temperature and was stirred rapidly while the headspace was flushed with a stream of nitrogen. When I arrived at the laboratory a few minutes after the accident, nitrogen was still flowing from the burned-off end of the plastic tubing.

Since that time, I noticed a reference to the “hydrogen explosion” in the ancient chemical literature as a way to identify nitrous oxide.

By David Mendenhall
Elmsford, N.Y.

No Comments

Leave a Reply

Sorry, comments are closed.