Haystack 2011 Year-in-Review

Well, 2011 is in the books, and we here at The Haystack felt nostalgic for all the great chemistry coverage over this past year, both here and farther afield. Let’s hit the high points: 1. HCV Takes Off – New treatments for Hepatitis C have really gained momentum. An amazing race has broken out to bring orally available, non-interferon therapies to market. In October, we saw Roche acquire Anadys for setrobuvir, and then watched Pharmasset’s success with PSI-7977 prompt Gilead’s $11 billion November buyout.  And both these deals came hot on the heels of Merck and Vertex each garnering FDA approval for Victrelis and Incivek, respectively, late last spring. 2. Employment Outlook: Mixed – The Haystack brought bad employment tidings a few times in 2011, as Lisa reported. The “patent cliff” faced by blockbuster drugs, combined with relatively sparse pharma pipelines, had companies tightening their belts more than normal. Traffic also increased for Chemjobber Daily Pump Trap updates, which cover current job openings for chemists of all stripes. The highlight, though, might be his Layoff Project.  He collects oral histories from those who’ve lost their jobs over the past few years due to the pervasive recession and (slowly) recovering US economy.. The result is a touching, direct, and sometimes painful collection of stories from scientists trying to reconstruct their careers, enduring salary cuts, moves, and emotional battles just to get back to work. 3. For Cancer, Targeted Therapies – It’s also been quite a year for targeted cancer drugs. A small subset of myeloma patients (those with a rare mutation) gained hope from vemurafenib approval. This molecule, developed initially by Plexxikon and later by Roche / Daiichi Sankyo, represents the first success of fragment-based lead discovery, where a chunk of the core structure is built up into a drug with help from computer screening.From Ariad’s promising  ponatinib P2 data for chronic myeloid leukemia, to Novartis’s Afinitor working in combination with aromasin to combat resistant breast cancer. Lisa became ‘xcited for Xalkori, a protein-driven lung cancer therapeutic from Pfizer. Researchers at Stanford Medical School used GLUT1 inhibitors to starve renal carcinomas of precious glucose, Genentech pushed ahead MEK-P31K inhibitor combinations for resistant tumors, and Incyte’s new drug Jakifi (ruxolitinib), a Janus kinase inhibitor, gave hope to those suffering from the rare blood cancer myelofibrosis. 4. Sirtuins, and “Stuff I Won’t Work With  – Over at In the Pipeline, Derek continued to chase high-profile pharma stories. We wanted to especially mention his Sirtris / GSK coverage (we had touched on this issue in Dec 2010). He kept up with the “sirtuin saga” throughout 2011, from trouble with duplicating life extension in model organisms to the...

Read More
Bristol-Myers, Pfizer’s Apixaban Tops Warfarin In Anticoagulant Face-Off
Aug29

Bristol-Myers, Pfizer’s Apixaban Tops Warfarin In Anticoagulant Face-Off

Over the weekend Bristol-Myers Squibb and Pfizer announced that their blood-clot-preventing drug candidate, Eliquis (apixaban), bested the workhorse anticoagulant Coumadin (warfarin) in a large clinical trial. The results were announced at the European Society of Cardiology congress and simultaneously published in the New England Journal of Medicine. This is the first time that one of the cadre of anticoagulants seeking to replace warfarin has been shown to be superior to warfarin at preventing dangerous blood clots that can lead to strokes while also having a lower rate of bleeding compared to warfarin. In the 18,201 patient Phase III clinical trial, called ARISTOTLE, apixaban reduced the risk of stroke in patients with an abnormal heart rhythm called atrial fibrillation by 21 percent, major bleeding by 31 percent, and mortality by 11 percent. More statistics are available in the announcement, the journal article, and in this Forbes report, which plucks out these illustrative numbers: The investigators calculated that for every 1000 patients treated with apixaban instead of warfarin for 1.8 years •stroke would be avoided in 6 patients, •major bleeding would be avoided in 15 patients, and •death would be avoided in 8 patients. Analysts reacted positively to the data, with Leerink Swann analyst Seamus Fernandez raising his 2017 sales estimate for apixaban by $1.1 billion to $4.1 billion in a note to investors. We’ve previously explained how apixaban works– briefly, it blocks Factor Xa, a protease enzyme near the end of the complex biochemical pathway that regulates blood clotting. Another Factor Xa inhibitor, rivaroxaban, has been approved in Europe but awaits FDA approval. Pradaxa (dabigatran), which blocks the enzyme thrombin, has been approved by FDA for reducing the risk of stroke associated with atrial fibrillation. So what’s the secret of apixaban’s success? In 2010, we spoke with Ruth R. Wexler, executive director of cardiovascular diseases chemistry at Bristol-Myers Squibb, who explained how apixaban was designed with pharmacokinetic properties (the properties that reflect how the body affects a drug’s fate after administration) in order to reduce the risk of off-target effects. The extent to which an anticoagulant gets distributed through the body also matters, says Ruth R. Wexler, executive director of cardiovascular diseases chemistry at Bristol-Myers Squibb. “Coagulation factors are in the blood,” she says. So there’s no need for a drug candidate that blocks a coagulation factor, such as Factor Xa, to be distributed beyond the bloodstream and reach other tissues and organs. “Getting into other tissues and organs is frequently the reason why there are off-target safety issues,” she says. This was one of many concerns BMS had in mind as it developed its most advanced Factor Xa inhibitor,...

Read More
Macrocycle Milestone for Ironwood Pharma
Aug17

Macrocycle Milestone for Ironwood Pharma

Ironwood Pharmaceuticals and Forest Laboratories last week announced submission of an NDA for linaclotide, a peptide macrocycle for treatment of irritable bowel syndrome (IBS). This is the first new drug application for Ironwood, a 13-year old Cambridge, MA company, and it could validate other companies’ strategies for large-ring drugs (covered recently by Carmen Drahl in C&EN). There’s an enormous potential market for this drug; by Ironwood’s count, a combined 45 million people in the US suffer from IBS and related chronic constipation (CC), yet few drugs are approved for these conditions. So, how does linaclotide help IBS sufferers, um . . . go? This 14-amino acid peptide ring, taken orally, arrives at the intestinal lumen, where, according to Ironwood patent literature, it docks with a receptor enzyme called guanylate cyclase C (GC-C). The extracellular domain (part that sticks out of the cell membrane), upon binding, initiates the intracellular domain (inside the cell) to begin production of guanosine-3’, 5’-cyclic monophosphate (cGMP), a signaling molecule that induces changes in the intestinal wall. In short, cGMP prompts the intestinal surface to release chloride and bicarbonate ions into the intestinal tract, which decreases sodium uptake and increases fluid secretion (Note: interestingly, this is similar to the body’s response upon E.coli infection; a bacterial toxin called ST-peptide causes traveller’s diarrhea). In Ironwood’s own words, these physiological changes “accelerate intestinal transit,” which helps to move solid waste and decrease overall pain by acting on local nerve responses. Update (3:20PM, 8/17/11) – Changed “nearly 45 million people in the US alone suffer from IBS, yet few drugs are approved for this condition” to “combined 45 million people in the US suffer from IBS and related chronic constipation (CC), yet few drugs are approved for these...

Read More
Remedium Technologies Gets A Grip On Severe Bleeding
May25

Remedium Technologies Gets A Grip On Severe Bleeding

In the last year we’ve covered many up-and-coming drugs for controlling the delicate balance between clotting and bleeding. But what happens when something—an injury or a major surgical procedure—overwhelms that system? Controlling big bleeds is big business, from the battlefield to the operating room. This Monday, at the American Chemical Society’s Middle Atlantic Regional Meeting (MARM) in College Park, Maryland, I heard from Matthew Dowling, CEO of a startup looking to make its mark in that space. The company is called Remedium Technologies, and it’s developing chemically modified versions of a natural biopolymer to make improved materials for stanching blood flow. Remedium is one of several companies getting on its feet with help from technology incubation programs the University of Maryland. Representatives from several of those companies, including Dowling, gave talks at a MARM symposium on the science of startups. Look here for the MARM session’s program– it includes other companies in the drug and vaccine space, including Azevan Pharmaceuticals (which C&EN wrote about in 2001 when it was called Serenix), Leukosight, and SD Nanosciences. The biochemical pathway that regulates clotting can’t support severe injuries that lead to profuse bleeding, Dowling said Monday. While several treatments exist for this kind of severe injury, where sutures might not work to close a wound, they have drawbacks that Dowling thinks Remedium’s technology can address. The company’s material of choice is chitosan, a biopolymer that can be scavenged from waste shells of shrimp or crabs. Chitosan wound dressings are already on the market, but they become saturated with blood and quit sticking to tissue after about 30 minutes, which can lead to more bleeding. As a bioengineering graduate student at Maryland, Dowling developed an alternative chitosan modified with hydrophobic groups that help it stick to tissues longer. This modified biomolecule is the basis of Remedium’s technology. The company likens the material to Velcro because it is the sum total of weak interactions between hydrophobic groups and tissue that help the material stick around, Dowling explains. Once the wound has had time to heal, the material can be gently peeled away.  The chemical structure of Remedium’s hydrophobic groups is proprietary; Dowling used benzene n-octadecyl tails in graduate school. The company has two products in development- a modified chitosan “sponge” and a spray-on blood clotting foam. Neither of those products is yet available for purchase. In College Park, Dowling showed a video demonstrating how the modified chitosan makes blood congeal quickly, and how the effect can be reversed by applying alpha-cyclodextrin. In a second video, the sponge is tested on a bleeding pig that’s had a major blood vessel cut open. This presentation is similar to...

Read More

Haystack 2010 Year-In-Review

This Friday, we’re looking back at 2010’s big news in pharma and biotech, both the good and the bad. Check out our picks and be sure to weigh in on what you think we missed. 1. Provenge Approved In April, Dendreon’s Provenge became the first approved cancer immunotherapy. Dendreon CEO Mitch Gold called it “the dawn of an entirely new era in medicine.” And while prostate cancer patients are excited for a new treatment option, the approval is perhaps most exciting for its potential to reignite interest in cancer immunotherapy research. There’s a lot of room for improving the approach—Provenge is, after all, expensive and highly individualized. Now that immunotherapy have been proven to work, there’s hope that the lessons learned in both its discovery and clinical development will aid scientists in inventing even better cancer vaccines. 2. Obesity Field Slims The obesity drug race played out in dramatic fashion in 2010, with three biotech companies-Vivus, Arena, and Orexigen, each making their case for its weight-loss medication before FDA. As of this writing, Orexigen’s drug Contrave seems to be on the surest footing to approval, but longtime obesity-drug watchers know that caution seems to rule the day at FDA, so nothing is a sure bet. Orexigen’s Contrave and Vivus’s Qnexa are both combinations of already-approved drugs, whereas Arena’s Lorqess is a completely new molecule. When C&EN covered the obesity race in 2009, it seemed that Lorqess (then going by the non-brand-name lorcaserin) had the cleanest safety profile, but Qnexa was best at helping patients lose weight. But FDA’s panels didn’t always play out the way folks expected. There were safety surprises- notably the worries about tumors that cropped up in rats on high doses of Lorqess, and the extensive questioning about birth defect risks from one of the ingredients in Vivus’ Qnexa. The fact that FDA’s panel voted favorably for Orexigen’s Contrave, a drug that’s thought to have some cardiovascular risks, generated discussion because FDA pulled Abbott’s Meridia, a diet drug with cardiovascular risks, from the market in October. The dust still hasn’t fully settled. Arena and Vivus received Complete Response Letters from FDA for Lorqess and Qnexa. Vivus has submitted additional documentation and a followup FDA meeting on Qnexa is happening in January. Also to come in January is the agency’s formal decision on Contrave. And if you’re interested in learning about the next wave of obesity drugs coming up in clinical trials, read this story in Nature News. 3. Sanofi & Genzyme: The Neverending Story Speaking of drama, Sanofi’s pursuit of Genzyme has been in the headlines for months now, and promises to stretch well into 2011. The...

Read More