Exploring Rational Drug Design
Feb17

Exploring Rational Drug Design

Medicinal chemists strive to optimize molecules that fit snugly into their proposed targets. But in the quest for potency, we often overlook the local physics that govern drugs’ binding to these receptors. What if we could rationally predict which drugs bind well to their targets? A new review, currently out on J. Med. Chem. ASAP, lays out all the computational backing behind this venture. Three computational chemists (David Huggins, Woody Sherman, and Bruce Tidor) break down five binding events from the point-of-view of the drug target: Shape Complementarity, Electrostatics, Protein Flexibility, Explicit Water Displacement, and Allosteric Modulation….whew! Note: Before we dive into this article, let’s clarify a few terms computational drug-hunters use that bench chemists think of differently: ‘decoy’ – a test receptor used to perform virtual screens; ‘ligand’ – the drug docking into the protein; ‘affinity / selectivity’ – a balance of characteristics, or how tightly something binds vs. which proteins it binds to; ‘allosteric’ – binding of a drug molecule to a different site on an enzyme than the normal active site. Regular readers and fans of compu-centric chem blogs such as The Curious Wavefunction and Practical Fragments will feel right at home! We’ll start at the top. Shape complementarity modeling uses small differences in a binding pocket, such as a methylene spacer in a residue (say, from a Val to Ile swap) to dial-in tighter binding between a target and its decoy. The authors point out that selectivity can often be enhanced by considering a drug that’s literally too big to fit into a related enzymatic cavity. They provide several other examples with a ROCK-1 or MAP kinase flavor, and consider software packages designed to dock drugs into the “biologically active” conformation of the protein. Electrostatic considerations use polar surface maps, the “reds” and “blues” of a receptor’s electronic distribution, to show how molecular contacts can help binding to overcome the desolvation penalty (the energy cost involved in moving water out and the drug molecule in). An extension of this basic tactic, charge optimization screening, can be used to test whole panels of drugs against dummy receptors to determine how mutations might influence drug binding. Because target proteins move and shift constantly, protein flexibility, the ability of the protein to adapt to a binding event, is another factor worth considering. The authors point out that many kinases possess a “DFG loop” region that can shift and move to reveal a deeper binding cavity in the kinase, which can help when designing binders (for a collection of several receptors with notoriously shifty binding pockets – sialidase, MMPs, cholinesterase – see p. 534 of Teague’s NRDD review). But these...

Read More