#ASCO12 Data Digest: Combating Resistance in Lung Cancer

The following is a guest post from Sally Church (known to many in the twittersphere as @MaverickNY), from the Pharma Strategy Blog. The American Society of Clinical Oncology (ASCO) meeting, held in Chicago earlier this month, brought some fascinating presentations on progress in two very tough to treat cancer types, lung cancer and advanced melanoma. This week, we’ll take a look at some of the data that emerged out of ASCO on small molecules that could overcome the limitations of existing therapies. Treatment for lung cancer and melanoma has commonalities. Small molecule kinase inhibitors targeting a particular aberration driving the tumor have been approved for both types of cancer. But in each case, tumors eventually develop resistance to those kinase inhibitors, usually after about 6 to 9 months of treatment. Researchers are now trying to pinpoint the mechanism that tumor cells use to overcome the activity of kinase inhibitors, and then design new compounds or combinations of drugs that can improve patient outcomes. Today we’ll focus on advances in non-small cell lung cancer (NSCLC). ASCO brought data from several new agents—most notably, Boehringer Ingelheim’s afatinib, AstraZeneca’s selumetinib, and Novartis’ LDK378—as well as new combinations of existing drugs. First, some background on the current treatment paradigm in NSCLC: To date, scientists have identified several key protein receptors—EGFR, KRAS, and ALK—as drivers of the disease. Patients with a mutation in EGFR can take Genentech’s Tarceva (erlotinib) or AstraZeneca’s Iressa (gefitinib), but only after undergoing four cycles of chemotherapy. Although Tarceva was approved based on its ability to shrink tumors, it only prolongs survival in NSCLC patients by one month (12 months Tarceva vs. 11 months for placebo). Meanwhile, people who have the anaplastic lymphoma kinase (ALK-ELM4) translocation, can receive Pfizer’s Xalkori (crizotinib), which was approved in the U.S. in 2011. Unfortunately, people with the KRAS mutation, which is considered mutually exclusive with EGFR, do not benefit from either additional chemotherapy or EGFR inhibitors. New therapies are desperately needed, since prognosis tends to be rather poor. At ASCO this year, clinicians reported new data that answered some key questions about how best to treat people with these particular mutations: Does a pan-ErbB inhibitor produce better results upfront than chemotherapy? Unlike Tarceva and Iressa, which target only EGFR (also known as ErbB1), Boehringer Ingelheim’s drug candidate afatinib is a pan-Erb inhibitor that targets ErbB1, B2 and B4. The idea behind afatinib is to determine whether an irreversible pan Erb inhibitor with preclinical activity against the T790M mutation, which is known to induce resistance to erlotinib, would be more effective. In this phase III randomized trial, patients with the EGFR mutation were randomized 2:1...

Read More

#BIO2012: Pfizer’s academic push by the numbers

The evolution of the model for academic-pharma collaboration has been a topic of much discussion as more companies try to tap into university talent for early-stage research (recent examples of collaborations can be found here and here). Industry observers question whether anything tangible will come out of the efforts (see here for a recent critique), believing the divergent missions and cultural differences of each organization inevitably sidelines these pacts. Pfizer is making one of the more aggressive pushes through its Centers for Therapeutic Innovation. Under the CTI model, Pfizer has set up labs in research hotbeds like Boston and San Francisco, where, through partnerships with various academic institutions, its scientists work side-by-side with university scientists to discover new biologics-based drugs. This week at BIO, I sat down with Tony Coyle, CTI’s chief scientific officer, to talk about CTI’s progress. A more in-depth look at the CTI model will come in the pages of the magazine, but in the meantime, I wanted to share some facts and figures that came out of our chat: Number of CTIs formed: Four (San Francisco, San Diego, New York, Boston) Number of academic centers involved: 20 Number of Pfizer scientists across each of its dedicated labs: roughly 100 (Coyle says about 75% were hired from the outside, coming from biotech, academia, with a few from big pharma) Number of proposals reviewed in the last year: 400 Percentage of proposals overlapping with internal Pfizer efforts: <5% Number of proposals funded so far: 23 Number of therapeutic areas being studied: 4 (rare diseases, inflammation, cardiovascular disease, and oncology) Facts and figures aside, Pfizer is trying to move as quickly as possible given the learning curve of teaming with academia. Coyle said he’s promised his bosses that by the third year of the effort, at least four drugs will be in human studies across multiple therapeutic areas. “We’re well on our way to identifying a number of candidates, and I have no doubt that in the next 18 months, we’ll be in our first patient studies,” he added. Those numbers could change in 2013, when Pfizer potentially expands its CTI outside the U.S. “Ex-U.S is still our ambition,” Coyle says. “2012 has been a period of ‘lets build the group, get the programs and start executing on the pipeline.’ For 2013, we will be and are looking at opportunities ex-U.S., and have had some pretty good discussions to date...

Read More
Tetrodotoxin: Why Toxic Is Complicated
May22

Tetrodotoxin: Why Toxic Is Complicated

(This post was written for the “Our Favorite Toxic Chemicals” blog carnival hosted by Sciencegeist.) It was a meal Captain James Cook would just as soon have forgotten. The fish, an unfamiliar species, seemed harmless enough. But after just a small taste of its liver, he and two shipmates regretted it. “We were seized with an extraordinary weakness in all our limbs attended with a numness [sic]…We each of us took a Vomet and after that a Sweat which gave great relief. One of the pigs which had eat the entrails was found dead… When the Natives came on board and saw the fish hanging up, they immidiately [sic] gave us to understand it was by no means to be eat.” Cook had a rather more dramatic introduction to the lethal chemical tetrodotoxin than I did. I learned about it from a lecture in a windowless room. (Yes, I’ve linked to the original slides, still online after eight years.) That presentation had plenty to make my ears perk up. Highly poisonous. No antidote. Still kills today, because pufferfish, one of the web of creatures that makes tetrodotoxin, gets carved into a delicacy called fugu, and sometimes those knives miss a little bit of the animal’s toxic innards. We weren’t learning about tetrodotoxin because of its deadliness. Tetrodotoxin, to the organic chemist, is a case study. The lab where I earned my Ph.D. is in the business of making the toughest molecules it can. The lessons teams learned by forging tetrodotoxin from scratch, the idea goes, will be useful in other endeavors. Chemists for decades have argued about whether this is an appropriate way to train students, but suffice to say it’s still the way that most medicinal chemists in pharma get their start. Tetrodotoxin is different things to different people. To biochemists and neurobiologists, tetrodotoxin, or TTX for short, is a tool for unraveling how pain works. Researchers today know that TTX binds to sodium channel proteins involved with pain pathways in the nervous system. To those who study the cultures of Haiti, tetrodotoxin evokes something else entirely– the zombie of Haitian tradition. In the 1980s, ethnobotanist Wade Davis fingered tetrodotoxin as a key ingredient in a powder witch doctors use in voodoo zombie-making rituals. His doctoral thesis, as well as his bestselling book the “The Serpent and the Rainbow”, about the topic eventually became the basis for a movie of the same name. Davis’s results came under fire from the medical and scientific community. Another team’s measurements of tetrodotoxin levels in the powder detected amounts too low to have any relevant effects, though Davis and another set of...

Read More

Epizyme & Celgene to Develop Epigenetics-Based Cancer Drugs

Cambridge, Mass.-based Epizyme has scored $90 million upfront as part of a broad cancer drug development pact with Celgene. The deal adds to a spate of lucrative pacts to find compounds to modulate epigenetic targets, or enzymes that control gene expression without altering the underlying DNA. As we wrote in last week’s cover story, DNA carries the instructions for assembling all of life’s essential building blocks, but epigenetics dictates how and when that DNA is put to work. Recently, companies have made significant process in understanding the complex biology behind epigenetic processes, while also figuring out how to design compounds that can potently block epigenetic enzymes. With the science and business rationale for pursuing epigenetic targets dovetailing, big pharma and big biotech alike are forging deep ties with the handful of companies with expertise in the field. Under the three-year deal announced today, Celgene has the right to opt-in to the ex-U.S. rights for any unencumbered histone methyl transferase program at Epizyme. Eisai currently has the rights to Epizyme’s EZH2 inhibitor, while GlaxoSmithKline has a deep collaboration with Epizyme against undisclosed targets that would be excluded from today’s pact with Celgene. Epizyme says the partnership makes sense because Celgene shares “our vision in oncology and epigenetics,” says Epizyme’s president and CEO Robert J. Gould. “That’s been a fundamental bedrock of our partnering strategy–to partner with people who share our enthusiasm for this space.” Indeed, Celgene has long played in the epigenetics space, boasting two of the four currently marketed drugs that act on epigenetic targets. However, Celgene’s drugs, Istadax and Vidaza, hit first-generation epigenetic targets. Epizyme’s activities, meanwhile, center on one of the next waves of epigenetic targets: a family of enzymes called histone methyltransferases (HMTs). Of the 96 members of that family, Epizyme has identified roughly 20 HMTs for which there is a clear link to a specific form of cancer, Gould says.  To date, the company has two compounds—the EZH2 inhibitor partnered with Eisai, and a DOT1L inhibitor—in preclinical studies. (Check out last week’s cover story on epigenetics for more on how Epizyme went about discovering those two compounds.) Celgene is kicking off the pact by opting into the inhibitor of DOT1L, an HMT that is implicated in mixed lineage leukemia, a rare subtype of the blood cancer that the Leukemia and Lymphoma Society says affects about 1,500 new patients in the U.S. each year. With each program thereafter that Celgene buys into, Epizyme could score up to $160 million in milestone payments. The cash influx, coupled with the U.S. rights to the programs, “positions us nicely to maintain our independence, but also control our own future as a...

Read More

Wither Neuroscience R&D? Pfizer’s Ehlers Doesn’t Think So

In this week’s issue, I look at the perceived exodus by pharma companies from neuroscience R&D. Between AstraZeneca’s recent cutbacks, the closure of Novartis’ neuroscience research facility in Basel, and earlier moves by GSK and Merck, industry watchers are understandably worried that the neuroscience pipeline will dry up. One person who isn’t worried is Michael Ehlers, Pfizer’s chief scientific officer for neuroscience research. Ehlers came to Pfizer a year and a half ago from Duke, with the explicit mission to revamp how the company finds and develops drugs for brain diseases. The scientist is convinced that the field is ripe for new and better drugs, and that by staying in the game, Pfizer will be in a good position to capitalize on what he believes will be a healthy flow of new discoveries. Many drug companies argue that the risk in neuroscience simply doesn’t justify the investment. The overarching sentiment is that the brain is still a black box: good targets are few and far between; clinical trials are long and unpredictable; regulatory approval is tough; and generic competition is plentiful. For many big pharma firms, the math just doesn’t add up. “I personally don’t find that calculus to give you the total picture,” Ehlers says. Shifting resources away from neuroscience to focus on areas like oncology, where the environment looks favorable—clear clinical trial endpoints, the opportunity for fast-track approval, an easier chance for reimbursement from payors—only makes sense in the short term, Ehlers says. But that thinking “is short sighted as to where the fundamental state of biology is in neuroscience,” he says. Why is Ehlers so encouraged about a field that so many are walking away from? He believes that neuroscience is poised to benefit from the kind of genetic links that generated so many targets—and eventually so many targeted-drugs—in oncology. “There is going to be kind of a revolution in the next five years—it’s not going to be tomorrow…but you have to think about that inflection of opportunity over the five-to-ten year time horizon.” To take advantage of each new genetic clue, Ehlers has revamped Pfizer’s approach to neuroscience R&D. As this week’s story explains: In the past, big pharma often gave its scientists a mandate to work in areas such as Alzheimer’s or schizophrenia, regardless of tractable drug targets. Now at Pfizer, Ehlers says, his team is “indication agnostic.” Any program that Pfizer undertakes must have a critical mass of biological knowledge—for example, human genetics, human phenotyping, and evidence of dysfunctional neurocircuits—to convince Ehlers it’s worth pursuing. “We start there,” he says. “That hasn’t always been the case.” Moreover, Pfizer no longer relies on mouse...

Read More

Pharma & Biotech Job Cuts Mount in 2012

For those keeping track, yesterday’s layoffs at AstraZeneca add to an already substantial list of cuts in the pharma and biotech industries since the beginning of the year. By our tally, nearly 13,000 job cuts, many in R&D, have been announced so far–and we’re barely into February. Here’s where we’re at (and do let us know if we’ve missed any): –AstraZeneca is chopping 7,300 jobs, including 2,200 R&D positions, by 2014. Neuroscience research is being revamped and focused on external partnerships; the company’s Montreal R&D site will be shuttered, and research activities ended at its Södertälje site in Sweden. –Genzyme gave the pink slip to an unspecified number of R&D scientists this week. The layoffs come as Sanofi integrates its big biotech acquisition. –Alnylam is trimming 61 jobs, or 33% of its workforce, in order to save roughly $20 million this year. –BioSante Pharmaceuticals is shedding 25% of its staff, or 21 employees and contractors, after disappointing Phase III results for its female sexual dysfunction treatment LibiGel. –Takeda is axing 2,800 jobs, or 9% of its workforce, following its acquisition of Swiss drugmaker Nycomed. The bulk of the layoffs, which cut across R&D, commercial, operations, and administrative positions, will occur in Europe. –Novartis unveiled plans to shed some 1,960 positions in the U.S. as it braces for generic competition for Diovan, a blood pressure medicine that brought in more than $6 billion in 2010, and an expected drop in demand for its renin inhibitor Rasilez following questions about the drug’s safety. –Human Genome Sciences said it would cut 150 jobs, or about 14% of its workforce, in a move that affects manufacturing, R&D, and administrative activities. –Xoma is shedding 84 workers, or 34% of its staff, as it shifts to outsourcing late-stage and commercial manufacturing, as well as some research. –SkyePharma is cutting 20% of the 101 employees at its site in Muttenz, Switzerland. –Sanofi plans to layoff 100 workers at its Monteal site as part of an overhaul of its Canadian operations. –J&J will trim 126 workers as it closes its Monreal R&D...

Read More