Roche’s GA101 (obinutuzumab): Engineering an antibody to beat Rituxan
Jul29

Roche’s GA101 (obinutuzumab): Engineering an antibody to beat Rituxan

The following is a guest post from Sally Church (known to many in the twittersphere as @MaverickNY), from the Pharma Strategy Blog. Survival rates for people with B-cell driven blood cancers, such as non-Hodgkin’s Lymphoma and chronic lymphocytic leukemia, have vastly improved in the last decade thanks to the introduction of Rituxan, marketed by Biogen Idec and Genentech. But the drug, a chimeric monoclonal antibody targeting CD-20, a protein that sits on the surface of B-cells, has its limitations: not all patients respond at first, and others become resistant to the drug over time. As a result, companies are tinkering with the sugar molecules that decorate antibodies in hopes of coming up with a drug that binds better to its target and, ultimately, is more effective at battling cancer. At the American Society of Clinical Oncology annual meeting, held earlier this year in Chicago, Roche offered Phase III data showing its glycoengineered antibody GA-101 worked better than Rituxan at delaying the progression of CLL. If all goes well with FDA, the drug could be approved by the end of the year. BACKGROUND: Although the CD20 antigen is expressed on both normal and malignant cells, it has proven to be a useful target therapeutically.  Rituximab, ofatumumab and most of the anti-CD20 antibodies in earlier development are Type I monoclonal antibodies, which means that they have good complement-dependent cytotoxicity (CDC) and Ab-dependent cell mediated cytotoxicity (ADCC), but are weak inducers of direct cell death. In contrast to Type I monoclonal antibodies, next generation monoclonals are increasingly Type II, such as GA101 (obinutuzumab) in CLL and NHL and mogamulizumab (anti-CCR4), for T-cell leukemias and lymphomas.  They have little CDC activity, but are much more effective at inducing ADCC and also direct cell death, at least based on in vitro studies performed to date. How does glycoengineering make a difference? Glycoengineering is the term used to refer to manipulation of sugar molecules to improve the binding of monoclonal antibodies with immune effector cells, thereby increasing ADCC. Obinutuzumab is a very different molecule from rituximab, in that it is a novel compound in its own right (originally developed by scientists at Glycart before being bought by Genentech).  It is not a biosimilar of rituximab.  It is also a glycoengineered molecule designed specifically to improve efficacy through greater affinity to the Fc receptor, thereby increasing ADCC activity. The overall intent with the development of obinutuzumab was to significantly improve efficacy over rituximab and Type I monoclonal antibodies in B-cell malignancies using glycoengineering techniques. At the recent ASCO annual meeting, data from a phase III trial was presented to evaluate rituximab or obinutuzumab in combination with the chemotherapy...

Read More
Liveblogging First-Time Disclosures of Drug Structures from #ACSNOLA
Apr04

Liveblogging First-Time Disclosures of Drug Structures from #ACSNOLA

Bookmark this page now, folks. On Wednesday, April 10, I will be here, liveblogging the public debut of five drug candidates’ structures. The “First Time Disclosures” Session at the ACS National Meeting in New Orleans runs from 2PM-4:55PM Central time. I am not able to conjure up a permalink to the session program, so here’s a screengrab instead. 1:20PM I’m in hall R02, where the session’s set to begin in about 40 minutes. Found a seat with a power outlet nearby, so I’m good to go! 2:29PM BMS-906024 Company: Bristol-Myers Squibb Meant to treat: cancers including breast, lung, colon, and leukemia Mode of action: pan-Notch inhibitor Medicinal chemistry tidbit: The BMS team used an oxidative enolate heterocoupling en route to the candidate– a procedure from Phil Baran’s lab at Scripps Research Institute. JACS 130, 11546 Status in the pipeline: Phase I Relevant documents: WO 2012/129353 3:02PM LGX818 Company: Novartis Institutes for Biomedical Research and Genomics Institute of the Novartis Research Foundation Meant to treat: melanoma with a specific mutation in B-RAF kinase: V600E Mode of action: selective mutant B-RAF kinase inhibitor Status in the pipeline: Phase Ib/II Relevant documents: WO 2011/023773 ; WO 2011/025927 3:47PM AZD5423 Company: AstraZeneca Meant to treat: respiratory diseases, in particular chronic obstructive pulmonary disease Mode of action: non-steroidal glucocorticoid receptor modulators Medicinal chemistry tidbit: This compound originated in part from a collaboration with Bayer Pharma. Status in the pipeline: Phase II Relevant documents: WO 2011/061527 ; WO 2010/008341 ; WO 2009/142568 4:17PM Birinapant (formerly known as TL32711) Company: TetraLogic Pharmaceuticals Meant to treat: cancer Mode of action: blocks the inhibitor of apoptosis proteins to reinstate cancer cell death Status in the pipeline: Phase II Relevant documents: US 8,283,372 5:00PM MGL-3196 (previously VIA-3196) Company: Madrigal Pharmaceuticals, acquired from VIA Pharmaceuticals, licensed from Roche Meant to treat: high cholesterol/high triglycerides Mode of action: mimics thyroid hormone, targeted to thyroid hormone receptor beta in the liver Medicinal chemistry tidbit: this molecule was discovered at Roche’s now-shuttered Nutley site. Status in the pipeline: completed Phase I trials Relevant documents: WO 2007/009913 ; WO 2009/037172 And that’s it, folks! Watch the April 22nd issue of C&EN for more on this...

Read More

New Targets in Advanced Prostate Cancer

The following is a guest post from Sally Church (known to many in the twittersphere as @MaverickNY), from the Pharma Strategy Blog. Much hullabaloo has been in the medical news over the past year over new options for the treatment of metastatic castrate resistant prostate cancer (CRPC). FDA approval for two new drugs, abiraterone acetate (J&J’s Zytiga) and enzalutamide (Astellas/Medivation’s Xtandi), has meant a sharp focus on drugs that target the androgen receptor. But at the the American Society of Clinical Oncology Genitourinary (ASCO GU) symposium, held last month in Orlando, intriguing data on new targets for CRPC emerged. Zytiga and Xtandi target the androgen receptor (AR) in very different ways, but the overall effect is similar, in that they can effectively reduce the levels of prostatic serum antigen (PSA), which is reactivated in tumors with advanced disease. Zytiga acts high up in the steroidogenic pathway and one side effect associated with monotherapy is the development of mineralcorticosteroid effects, leading to over stimulation of the adrenal glands and hypokalaemia.  This toxicity must therefore managed with concomitant prednisone therapy. Xtandi, meanwhile, more directly targets the androgen receptor, which tends to be amplified in advanced prostate cancer. The drug doesn’t have same effect on cortisol production as Zytiga, and can therefore be taken without steroids. The androgen receptor isn’t the only valid target in CRPC, however.  Aldo-keto reductase 1C3 (AK1C3), an enzyme that can facilitate androstenedione conversion to testosterone, is also over-expressed in advanced prostate cancer. Several new agents in early development appear to specifically target AK1C3. At ASCO GU, a couple of abstract particularly caught my eye and are worth highlighting here: 1) Bertrand Tombal et al., presented the initial data on Xtandi monotherapy in advanced prostate cancer in the hormone-naive setting, that is prior to CRPC.  Traditionally, Androgen Deprivation Therapy (ADT) is given to patients with high risk disease.  In the US, LHRH antagonists are used first-line, followed by AR antagonists such as bicalutamide, giving a basis for the rationale testing Xtandi, which is a more complete antagonist of the AR than bicalutamide. In this trial, the single arm design sought to determine whether not enzalutamide would have activity in patients who had not received standard ADT therapy. The waterfall plots in this study (n=67) were impressive. The results showed that: a) Ninety-three percent of study participants experienced a ≥80% PSA decrease at week 25. b) Median change in PSA was -99.6% (range -100% to -86.5%). In other words, most of the men in this trial responded well to Xtandi, suggesting that a randomized trial is well worth pursuing next. You can read more about the specifics of this new development and what Dr Tombal had to say...

Read More

New Developments in Advanced Pancreatic Cancer from ASCO GI 2013 – Part 1

The following is a guest post from Sally Church (known to many in the twittersphere as @MaverickNY), from the Pharma Strategy Blog. The cancer research conference season kicked off in earnest in 2013 with the American Society of Clinical Oncology (ASCO)’s Gastrointestinal Symposium, held in San Francisco in late January. Some of the most anticipated data to be presented at ASCO GI was for drugs that treat pancreatic cancer, with three drugs—Celgene’s Abraxane, AB Science’s masitinib, and Sanofi’s S1, generating the most interest. With this post, we’ll take a closer look at the most advanced of the three agents, Abraxane, which generated encouraging results in a Phase III study. Later this week, we’ll tackle masitinib and S1. Abraxane is a nanoparticle albumin-bound form of the breast cancer drug paclitaxel, and is designed to improve the activity of the active ingredient. Abraxane is already approved in the US for advanced breast and lung cancers, and recently showed signs of activity in metastatic melanoma. At ASCO GI, Daniel Von Hoff, director of the Translational Genomics Research Institute, presented data from a randomized phase III study called MPACT that compared the effects of Lilly’s Gemzar, the current standard of care, to a once weekly combination of Gemzar and Abraxane in patients with metastatic adenocarcinoma of the pancreas. With 861 patients, this was a large global study that sought to determine whether the combination would outdo the regulatory standard of care. A note on the trial design: Although this study uses Gemzar as the standard of care, in practice, many leading oncologists prescribe FOLFIRINOX (fluorouracil, leucovorin, irinotecan and oxaliplatin) for advanced pancreatic patients. But because FOLFIRINOX is generic, and is not formally approved by FDA for advanced pancreatic cancer, Phase III studies tend to match new drug candidates up against Gemzar. As Hedy Kindler, director of gastrointestinal oncology at the University of Chicago, explained, FOLFIRINOX is widely used because the regimen has “the higher response rate, and that has the longer median survival.” However, FOLFIRINOX also has unpleasant side effects, and in private practice settings, oncologists prefer to use less toxic combinations based on Gemzar—namely, Gemzar alone, GemOx (with oxaliplatin), or GemErlotinib (with Tarceva, an EGFR TKI). To provide context, FOLFIRINOX typically has an improved survival of approximately 11 months, while gemcitabine or gemcitabine plus erlotinib elicit a 6-7 month improvement in median overall survival (MOS).  Erlotinib added 12 days of extra survival over gemcitabine alone, but unfortunately we have no way of selecting those advanced pancreatic patients most likely to respond to EGFR therapy. Celgene is exploring the combination of Abraxane and Gemzar based on preclinical work that suggests Abraxane can knock out the...

Read More
Francis Collins At TEDMED – Repurposing Drugs, Replacing Animal Models, Rocking Out
Apr11

Francis Collins At TEDMED – Repurposing Drugs, Replacing Animal Models, Rocking Out

You know you’re at an interesting conference when the director of the NIH starts off his presentation with a guitar duet, and shares a session with Cookie Monster. But the organizers of TEDMED made a very deliberate decision in opening this year’s conference with Francis Collins. This is the first year that the gathering of medical luminaries, artists, and design gurus (TED stands for Technology, Entertainment, Design) is taking place in Washington, DC, after moving from San Diego. It marks a philosophical shift for the organization, from TEDMED as idea incubator to TEDMED as inserting itself into the national conversation on health and medicine. What better way to do that then bringing in the head of the biggest biomedical funding agency? Collins wants to compress the time it takes to get a drug development pipeline, and make the pipeline less leaky. This isn’t news to folks around the pharma blogosphere, including here at the Haystack, Ash at Curious Wavefunction and Derek Lowe, who’ve followed last year’s announcement of NIH’s venture for drug discovery, the National Center for Advancing Translational Sciences. Folks have expressed some concerns about the concept, and its emphasis on the promise of gene-based drug discovery. But, as Derek noted, the fact of the matter is that everyone in drug discovery wants the things Collins wants, so there’s a measure of goodwill for the venture too. Collins spent his time on the TEDMED stage emphasizing two things: drug repurposing and developing high-tech cellular solutions to supplement and replace often-imperfect animal models. On the tech side, Collins showcased the Harvard-based Wyss Institute’s lung-on-a-chip, which combines tissue engineering and electronics to mimic the interface between the lung’s air sacs and capillaries (Science, DOI: 10.1126/science.1188302). He said that technologies like this suggest viable alternatives to animal testing are possible. When New Scientist reported on the lung-on-a-chip in 2010, researchers praised it as a step in the right direction, but cautioned that immortalized cell lines, such as those on the chip, don’t neccesarily behave like primary cells from patients. Collins also noted that it might be possible to use such devices with patients’ own cells someday. On the repurposing side, Collins cited an article on the topic in Nature Reviews Drug Discovery (DOI: 10.1038/nrd3473), and alluded to lonafarnib (SCH 66336), a farnesyltransferase inhibitor that was originally designed to be part of cancer-treatment cocktails. It didn’t pan out as a cancer drug, Collins said, but now clinical trials are underway to test whether the drug is effective at countering a rare mutation that causes Hutchinson-Guilford progeria, an ailment that leads to rapid aging in children. Collins shared the stage with 15-year-old Sam,...

Read More
Liveblogging First-Time Disclosures From #ACSSanDiego
Mar24

Liveblogging First-Time Disclosures From #ACSSanDiego

Watch this space on Sunday as I cover the public unveiling of five drug candidates’ structures. I’ll be liveblogging the “First Disclosures of Clinical Candidates” symposium at the San Diego ACS National Meeting, which runs from 2PM to 5PM Pacific. 1:30PM It’s half an hour before the start of the session and the big ballroom is still pretty empty. Expect that to change in short order. 2:30PM LX4211 Company: Lexicon Pharmaceuticals Meant to treat: type 2 diabetes Mode of action: dual inhibitor of sodium glucose transporters 1 and 2, which play key roles in glucose absorption in the gastrointestinal tract and kidney Medicinal chemistry tidbits: this drug candidate had Lexicon’s chemists refamiliarizing themselves with carbohydrate chemistry. Most inhibitors of sodium glucose transporters incorporate D-glucose in some way. Lexicon’s chemists realized they could try something different– inhibitors based on the scaffold of L-xylose, a non-natural sugar. The team has already published a J. Med. Chem paper (2009, 52, 6201–6204) explaining that strategy. LX4211 is a methyl thioglycoside-the team went with a methyl thioglycoside because upping the size too far beyond a methyl lost activity at SGLT1. Status in the pipeline: LX4211 is currently completing Phase IIb trials. 3:00PM BMS-927711 Company: Bristol-Myers Squibb Meant to treat: migraine Mode of action: antagonist of the receptor for calcitonin gene-related peptide- increased levels of this peptide have been reported in cases of migraine Medicinal chemistry tidbits: This team recently published an orally bioavailable CGRP inhibitor, BMS-846372 (ACS Med. Chem. Lett., DOI: 10.1021/ml300021s). However, BMS-846372 had limited aqueous solubility, something that might make its development challenging. To improve that solubility, the BMS team sought to add polar groups to their molecule, something that’s been tough to do with CGRP inhibitors historically. In the end, the team managed to add a primary amine to BMS-846372’s cycloheptane ring while maintaining CGRP activity, leading to BMS-927711. Status in the pipeline: Phase II clinical trials 3:05 lots of questions from the audience for this talk! One questioner notes (as was noted in talk) that 4 CGRP inhibitors had gone before this drug in the clinic, and not made it through. Speaker notes that this candidate is more potent than others at CGRP (27 picomolar). 3:53 We’re a bit behind schedule but got plenty of good chemistry… GSK2636771 Company: GlaxoSmithKline Meant to treat: tumors with loss-of-function in the tumor suppressor protein PTEN (phosphatase and tensin homolog)- 2nd most inactivated tumor suppressor after p53- cancers where this is often the case include prostate and endometrial Mode of action: inhibitor of phosphoinositide 3-kinase-beta (PI3K-beta). Several lines of evidence suggest that proliferation in certain PTEN-deficient tumor cell lines is driven primarily by PI3K-beta....

Read More