#ASCO12 Data Digest: Overcoming Resistance in Metastatic Melanoma

The following is a guest post from Sally Church (known to many in the twittersphere as @MaverickNY), from the Pharma Strategy Blog. Not long ago, metastatic melanoma was considered a graveyard for clinical research. But last year brought a major breakthrough in treating skin cancer: the approval of Roche’s Zelboraf (vemurafenib), a small molecule that has proven highly effective at treating the roughly 50% of the patient population that carry the BRAFV600E mutation. However, Zelboraf has limitations. Patients’ disease eventually becomes resistant to the drug and the lesions caused by the skin cancer tend to return after 6 to 9 months. At the American Society of Clinical Oncology (ASCO) meeting earlier this month, the big two questions on cancer specialists’ minds were: what are the mechanisms of resistance and how can we develop strategies to overcome them? An amazing thing about current melanoma research is that several physician-scientists involved in the clinical trials are also actively involved in translational research–this is sadly the exception rather than the rule, in oncology. But the connection between basic science and bedside has meant new targets are being identified and quickly tested in the clinic. One potential target recently discovered was MEK, a kinase that sits along the same signaling pathway as BRAF. When BRAF activity is turned off by Zelboraf, cancer finds a way to compensate for the loss by exploiting other kinases in the pathway. Researchers think that by combining a BRAF inhibitor with a MEK inhibitor, the pathway might be more comprehensively shut down than by either alone. Consequently, there was a tremendous amount of buzz around a melanoma trial that looked at combining a BRAF inhibitor, GSK2118436 (dabrafenib), and a MEK 1/2 inhibitor, GSK1120212 (trametinib). Previous studies have shown that given alone, dabrafenib could result in solid response rates of 59%; trametinib, meanwhile, produced a 25% response rate when given as a single agent. Jeffrey Weber from Moffitt Cancer Center in Tampa presented the results of the complex phase I/II study, which included melanoma patients with either the BRAFV600 E or K mutation who had not undergone treatment of any kind. The hope was that by suppressing the MAP kinase-dependent resistance mechanisms, patients would enjoy three kinds of improvements over current treatment: 1) Improved progression-free survival (PFS), response rate, and survival 2) Prolonged duration of response 3) Decreased incidence of BRAFi-induced proliferative skin lesions An impressive waterfall plot of tumor shrinkage for patients (n=77) with the BRAFV600K mutation drew gasps from the audience – only four patients failed to respond to the combination, while the majority had a response of 30% or better. This isn’t something you see every...

Read More

#ASCO12 Data Digest: Combating Resistance in Lung Cancer

The following is a guest post from Sally Church (known to many in the twittersphere as @MaverickNY), from the Pharma Strategy Blog. The American Society of Clinical Oncology (ASCO) meeting, held in Chicago earlier this month, brought some fascinating presentations on progress in two very tough to treat cancer types, lung cancer and advanced melanoma. This week, we’ll take a look at some of the data that emerged out of ASCO on small molecules that could overcome the limitations of existing therapies. Treatment for lung cancer and melanoma has commonalities. Small molecule kinase inhibitors targeting a particular aberration driving the tumor have been approved for both types of cancer. But in each case, tumors eventually develop resistance to those kinase inhibitors, usually after about 6 to 9 months of treatment. Researchers are now trying to pinpoint the mechanism that tumor cells use to overcome the activity of kinase inhibitors, and then design new compounds or combinations of drugs that can improve patient outcomes. Today we’ll focus on advances in non-small cell lung cancer (NSCLC). ASCO brought data from several new agents—most notably, Boehringer Ingelheim’s afatinib, AstraZeneca’s selumetinib, and Novartis’ LDK378—as well as new combinations of existing drugs. First, some background on the current treatment paradigm in NSCLC: To date, scientists have identified several key protein receptors—EGFR, KRAS, and ALK—as drivers of the disease. Patients with a mutation in EGFR can take Genentech’s Tarceva (erlotinib) or AstraZeneca’s Iressa (gefitinib), but only after undergoing four cycles of chemotherapy. Although Tarceva was approved based on its ability to shrink tumors, it only prolongs survival in NSCLC patients by one month (12 months Tarceva vs. 11 months for placebo). Meanwhile, people who have the anaplastic lymphoma kinase (ALK-ELM4) translocation, can receive Pfizer’s Xalkori (crizotinib), which was approved in the U.S. in 2011. Unfortunately, people with the KRAS mutation, which is considered mutually exclusive with EGFR, do not benefit from either additional chemotherapy or EGFR inhibitors. New therapies are desperately needed, since prognosis tends to be rather poor. At ASCO this year, clinicians reported new data that answered some key questions about how best to treat people with these particular mutations: Does a pan-ErbB inhibitor produce better results upfront than chemotherapy? Unlike Tarceva and Iressa, which target only EGFR (also known as ErbB1), Boehringer Ingelheim’s drug candidate afatinib is a pan-Erb inhibitor that targets ErbB1, B2 and B4. The idea behind afatinib is to determine whether an irreversible pan Erb inhibitor with preclinical activity against the T790M mutation, which is known to induce resistance to erlotinib, would be more effective. In this phase III randomized trial, patients with the EGFR mutation were randomized 2:1...

Read More
Liveblogging First-Time Disclosures From #ACSSanDiego
Mar24

Liveblogging First-Time Disclosures From #ACSSanDiego

Watch this space on Sunday as I cover the public unveiling of five drug candidates’ structures. I’ll be liveblogging the “First Disclosures of Clinical Candidates” symposium at the San Diego ACS National Meeting, which runs from 2PM to 5PM Pacific. 1:30PM It’s half an hour before the start of the session and the big ballroom is still pretty empty. Expect that to change in short order. 2:30PM LX4211 Company: Lexicon Pharmaceuticals Meant to treat: type 2 diabetes Mode of action: dual inhibitor of sodium glucose transporters 1 and 2, which play key roles in glucose absorption in the gastrointestinal tract and kidney Medicinal chemistry tidbits: this drug candidate had Lexicon’s chemists refamiliarizing themselves with carbohydrate chemistry. Most inhibitors of sodium glucose transporters incorporate D-glucose in some way. Lexicon’s chemists realized they could try something different– inhibitors based on the scaffold of L-xylose, a non-natural sugar. The team has already published a J. Med. Chem paper (2009, 52, 6201–6204) explaining that strategy. LX4211 is a methyl thioglycoside-the team went with a methyl thioglycoside because upping the size too far beyond a methyl lost activity at SGLT1. Status in the pipeline: LX4211 is currently completing Phase IIb trials. 3:00PM BMS-927711 Company: Bristol-Myers Squibb Meant to treat: migraine Mode of action: antagonist of the receptor for calcitonin gene-related peptide- increased levels of this peptide have been reported in cases of migraine Medicinal chemistry tidbits: This team recently published an orally bioavailable CGRP inhibitor, BMS-846372 (ACS Med. Chem. Lett., DOI: 10.1021/ml300021s). However, BMS-846372 had limited aqueous solubility, something that might make its development challenging. To improve that solubility, the BMS team sought to add polar groups to their molecule, something that’s been tough to do with CGRP inhibitors historically. In the end, the team managed to add a primary amine to BMS-846372’s cycloheptane ring while maintaining CGRP activity, leading to BMS-927711. Status in the pipeline: Phase II clinical trials 3:05 lots of questions from the audience for this talk! One questioner notes (as was noted in talk) that 4 CGRP inhibitors had gone before this drug in the clinic, and not made it through. Speaker notes that this candidate is more potent than others at CGRP (27 picomolar). 3:53 We’re a bit behind schedule but got plenty of good chemistry… GSK2636771 Company: GlaxoSmithKline Meant to treat: tumors with loss-of-function in the tumor suppressor protein PTEN (phosphatase and tensin homolog)- 2nd most inactivated tumor suppressor after p53- cancers where this is often the case include prostate and endometrial Mode of action: inhibitor of phosphoinositide 3-kinase-beta (PI3K-beta). Several lines of evidence suggest that proliferation in certain PTEN-deficient tumor cell lines is driven primarily by PI3K-beta....

Read More

AstraZeneca to Shed 2,200 R&D Jobs

AstraZeneca wielded a heavy ax to its workforce today as it prepares for tougher times ahead. The British-Swedish drugmaker is chopping 7,300 jobs, including 2,200 R&D positions, in hopes of achieving $1.6 billion in annual cost savings by 2014. This is the third round of major cutbacks at AstraZeneca. In 2010, the company announced plans to slash 8,000 jobs over four years, a move that added to the elimination of 15,000 jobs between 2007 and 2009. This specific round girds against an onslaught of generic competition for key products and accounts for several disappointments in the company’s late-stage pipeline. In the coming months, the company will lose patent protection in various markets for the anti-psychotic Seroquel IR, the anti-cholesterol drug Crestor, and the blood thinner Atacand. Meanwhile, AstraZeneca’s late-stage pipeline has faltered. The recent setbacks (adding to earlier ones) include ending development of the PARP inhibitor olaparib, which prompted it to take a $285 million charge; a failed Phase III trial for the antidepressant TC-5214; and a thumbs down from FDA last month for dapagliflozin, a Type II diabetes drug being developed with Bristol-Myers Squibb. R&D has taken a heavy hit in each round of cuts. During the Q&A session following AstraZeneca’s earnings presentation, one analyst said his back of the envelope calculations suggest the company will have shed 7,600 R&D jobs between 2006 and 2014. Based on comments by AstraZeneca’s R&D chief Martin Mackay, small molecule research has born the brunt of those cuts. He noted that headcount in biologics research has grown, and pointed out that biologics now account for 40% of the company’s early-stage pipeline (candidates in studies earlier than Phase II), up from 15-20% in recent years. The latest R&D revamp will be primarily focused on AstraZeneca’s neuroscience activities, where the risk of investment is seen as particularly high. “It’s a really tough area,” Mackay said.  “The industry hasn’t produced enough and we haven’t produced enough.” The challenge was highlighted in November, when TC-5214, an anti-depressant being developed by Targacept and AstraZeneca, failed to show benefit in a Phase III trial. The bad news came as a surprise, as TC-5214 had demonstrated strong efficacy in smaller trials. Three other Phase III trials are underway, but analysts are skeptical that the program can be salvaged. “Prospects appear grim,” Leerink Swann analyst Joshua Schimmer said in a note last month. AstraZeneca is creating a small team of 40 to 50 scientists that will work with external partners in academia and industry to discover and develop neuroscience drugs. The adoption of this new strategy means that the company’s Montreal R&D facility will be shuttered, and it will end R&D at its Södertälje site in Sweden....

Read More
The HCV Combo Race Just Got Hotter
Jan13

The HCV Combo Race Just Got Hotter

BMS is shelling out $2.5 billion dollars for Inhibitex, a small pharma company with a Phase II molecule for treatment of Hepatitis C (HCV). The deal adds to the scramble for HCV assets in recent months, with Gilead agreeing to pay almost $11 billion for Pharmasset in November, and Roche’s recent purchase of Anadys. While much has been written about the merits (and price tags) of each deal, the Haystack thought it was worth taking a closer look at the chemical composition of the multi-million dollar molecules. So what did BMS get for their money? INX-089, Inhibitex’s lead molecule, has a common antiviral motif: a nucleoside core (the 5-membered ring sugar attached to a nitrogen heterocycle) with an amino acid based prodrug hanging off the left-hand side. Clinically-tested antivirals sharing this basic setup include IDX-184 and NM-283, both from Idenix, and PSI-352938, from Pharmasset  (For an overview of the varied structures currently in development for HCV, see Lisa’s 2010 C&EN story). INX-089 bears a close resemblance to Pharmasset’s lead nucleotide inhibitor PSI-7977. That’s not a mistake, believes ‘089 discoverer Chris McGuigan, of the Welsh School of Pharmacy. In a recent article (J. Med. Chem. 2010, 53, 4949), McGuigan himself comments “The Pharmasset nucleoside [is] rather parallel to our early work on anti-HIV ProTides.” Wait, what are ProTides? Both INX-089 and PSI-7977 aren’t themselves the active viral inhibitor, but phosphoramidate “ProTide” prodrugs: compounds broken down by the body into the active drug (Chem Note: PSI-7977 has single-enantiomer Sp chirality at phosphorus, while INX-189 is a mixture of diastereomers). Once in the body, enzymes cleave the phosphoramidate group to a phosphate (PO42-). Kinases attach two more phosphate groups, and viruses let this dressed-up molecule inside, where the nucleotide warhead inhibits HCV by interfering with RNA replication (Antimicrob. Agents Chemother. 2011, 55, 1843). A few comments on the drug itself: The similarity of the ProTide portion (left-hand side) of the molecule to PSI-7977 really is striking: swap in an isobutyl ester and a phenyl, and it’s the same beast! The more interesting switch comes on the upper-right (“eastern”) part of the structure: a protected guanosine ring. This ring harks back to guanine, one of the four common nucleic acids found in DNA. PSI-7977, meanwhile, shows off a uracil, a nucleic acid found in RNA, not DNA. Although it’s tempting to think such similar compounds all dock into the NS5B polymerase at the active site (in the yellow “palm” of the hand-shaped enzyme), don’t be too sure – a recent paper by Pharmasset scientists (J. Med. Chem. 2012, Just Accepted) shows quite a few “Finger,” “Palm,” and “Thumb” sites.  It’s not yet clear whether...

Read More
ARIAD Presents PACE Data; Provides Potential Gleevec Backup
Dec15

ARIAD Presents PACE Data; Provides Potential Gleevec Backup

Sufferers of chronic myeloid leukemia (CML), a rare and tough-to-treat blood cancer, received some good news at the 2011 American Society of Hematology meeting in San Diego this week. On Monday, ARIAD Pharmaceuticals disclosed new results from the Phase 2 PACE trial of its lead drug ponatinib (AP24534). The data (covered by FierceBiotech, Xconomy, and TheStreet), indicate major responses to the drug in ~40% of recipients, even in advanced or refractory (resistant to treatment) CML . With these numbers in hand, ARIAD enters a tight race, already populated by headliners like Gleevec (imatinib), which in 2001 made a splash as a first-line CML therapy. Drugs such as Gleevec and ponatinib belong to the family of tyrosine kinase (TK) inhibitors, which dock with a mutated protein called Bcr-Abl. This protein (actually a fusion of two distinct proteins via a chromosomal mishap) triggers disease by accelerating blood cell creation, leading to uncontrolled growth and eventually CML. Since cancers constantly evolve, new mutations in the TK active site had rendered Gleevec ineffective for certain variations of CML. Many of the PACE trial patients had previously tried newer TK inhibitors, such as Sprycel (dasatinib, BMS) and Tasigna (nilotinib, Novartis), and found that their CML had become resistant due to a single amino acid mutation in the kinase active site, which swapped a polar residue (threonine) for a carbon chain (isoleucine). So, ARIAD chemists decided to develop a drug that borrowed the best points from the earlier therapies, but capitalized on this mutation (A pertinent review in Nature Chemical Biology covers early examples of “personalized” cancer drugs developed for disease variants). So, how did they accomplish this particular act of molecular kung-fu?  For that, we hit up the literature and go all the way back to . . . 2010. As explained in a development round-up (J. Med. Chem., 2010, 53, 4701), most approved Bcr-Abl inhibitors share several traits: densely-packed nitrogen heterocycles linked to a toluyl (methyl-phenyl) amide, then a highly polar end group, such as piperazine or imidazole. Since the mutation axed a threonine residue, the hydrogen-bond donor adjacent to the ring in earlier drugs was no longer necessary. So, chemists replaced it with a vinyl group. A computer analysis designed to achieve better binding and drug-like properties suggested an alkyne linker might fit into the mutated active site even better than a vinyl group, so that’s ultimately what ARIAD installed. The program also suggested moving an exocyclic amino group into the aromatic (forming an uncommon imiadzo-[1,2-b]-pyridazine, green in picture). Borrowing the best stuff from other therapies, ARIAD’s chemists also wove in the “flipped” amide and -CF3 motifs (both blue) from nilotinib, as well as the methylpiperazine...

Read More