Heptares solves first X-ray structure of Family B GPCR, but full details not yet public
Sep17

Heptares solves first X-ray structure of Family B GPCR, but full details not yet public

In what might be the year’s biggest molecular teaser, Heptares Therapeutics has announced that it has solved the first X-ray crystal structure of a G-protein coupled receptor in the Family B subclass. The work provides the first structural insights into a protein family that includes sought-after drug targets such as GLP-1 for diabetes and CGRP for migraine. Largely because of that drug discovery relevance, however, Heptares is choosing to keep its structure somewhat close to the vest. Officials presented views of the structure, of a GPCR called Corticotropin Releasing Factor (CRF-1) receptor, at conferences on Friday and Monday. But Heptares CEO Malcolm Weir says his team has no immediate plans to publish the structure or to deposit coordinates into the repository known as the Protein Data Bank. The structure, Weir says, is another success for Heptares’ GPCR stabilizing technology, StaR. The technique involves targeted mutations that help to trap a GPCR in a single biologically-relevant state. In the case of CRF-1, Weir says, the stabilized receptor is captured in the “off” state. The structure itself, which is at a resolution of 3 Ångstroms, has the 7-helix membrane-spanning structure typical of GPCRs. However, CRF-1’s architecture is rather different from receptors in Family A, the only GPCR family for which X-ray structures had been available until now, Weir says. “The overall shape of the receptor looks different, the orientation of the helices looks different, and there are detailed differences within helices that are at analogous positions in Family A receptors,” he says. He notes that there are differences in helices 6 and 7, which undergo important motions during GPCR activation. “This is an important breakthrough, although fine details of the structure and release of coordinates may still be some time away,” says Monash University’s Patrick Sexton, an expert in Family B GPCRs who was at Friday’s talk. The structure, he says, confirmed researchers’ expectations that the major differences in membrane-spanning helices between Family A and Family B receptors would occur on the extracellular side. “There was a very open and relatively deep extracellular binding pocket, with the receptor having a ‘V’ shaped appearance,” he says. This open pocket likely contributes to medicinal chemists’ difficulties obtaining high affinity small molecule ligands for Family B receptors, he suggests. That open pocket might be involved in another Family B GPCR mystery, according to Roger Sunahara, also in attendance Friday, who studies GPCRs’ molecular mechanisms at the University of Michigan, Ann Arbor. All Family B GPCRs, including CRF-1, have a large domain at their amino-terminus that contains large portions of their ligand binding sites. That domain was not included in this structure, he says, but...

Read More

What Pfizer’s Bapineuzumab Failure Means for Parkinson’s Disease Research

The spectacular—and largely anticipated—failure of the Alzheimer’s treatment bapineuzumab has caused an outpouring of stories questioning what went wrong and what it means about pharma’s approach to R&D. Pfizer, Johnson & Johnson, and Elan, the developers of bapineuzumab, are taking a beating in the press for investing so heavily, not to mention raising the hope of so many patients, in a therapy that had not shown strong signs of efficacy in early trials. Most stories are focused on the implications for Alzheimer’s research and, more generally, the pharma business model given the hundreds of millions of dollars the three companies sank into bapineuzumab. But news of its failure also resonated in research communities focused on other neurogenerative diseases, like Parkinson’s disease and Huntington’s disease, marked by protein aggregation. I checked in with Todd Sherer, CEO of the Michael J. Fox Foundation to understand what Parkinson’s researchers might learn from the disappointing data from bapineuzumab. Sherer believes there are scientific and business ramifications of the results, both of which might have a chilling effect on neuroscience research. From a scientific perspective, some are declaring the failure of bapineuzumab the nail in the coffin of the amyloid hypothesis, the theory that the beta-amyloid, the protein responsible for the plaque coating the brains of people with Alzheimer’s disease, is the primary cause of neuron death in the disease. Bapineuzumab, which blocks beta-amyloid, was one of a handful of treatments to test the hypothesis in the clinic. So far, every drug to reach late-stage trials has failed. Sherer isn’t convinced bapineuzumab is the nail in the amyloid hypothesis coffin. “Obviously the results are very disappointing given the level of interest and investment that’s been put forward for this therapy,” Sherer says. “I don’ think that the result is a definitive answer to the amyloid hypothesis because there are many different ways to target amyloid aggregation therapeutically.” Parkinson’s researchers are also trying to learn from the setbacks in Alzheimer’s and apply that to studies of drugs targeting alpha synuclein, the protein that clumps together in the brains of people with Parkinson’s disease. “One of the things that is a learning for us in Parkinson’s is really to try to be as smart and informative as we can be in the early clinical trials,” he says. In Alzheimer’s, for example, the Alzheimer’s Disease Neuroimaging Initiative (ADNI), a collaboration between government, academic, and industry scientists, was formed in 2003 to identify biomarkers that can be used both in the diagnosis of the diseases and in the clinical development of Alzheimer’s drugs. However, Sherer points out that while progress in the ADNI initiative has been promising, it...

Read More
Rigged Reactions: Biocatalysis Meets 13C NMR
Jul19

Rigged Reactions: Biocatalysis Meets 13C NMR

When you think of reaction screening, what comes to mind? Most would say LC-MS, the pharma workhorse, which shows changes in molecular polarity, mass, and purity with a single injection. Some reactions provide conversion clues, like evolved light or heat. In rare cases, we can hook up an in-line NMR analysis – proton (1H) usually works best due to its high natural abundance (99.9%). Please welcome a new screening technique: 13C NMR. How can that work, given the low, low natural abundance of ~1.1% Carbon-13? Researchers at UT-Southwestern Medical Center have the answer: rig the system. Jamie Rogers and John MacMillan report in JACS ASAP 13C-labeled versions of several common drug fragments, which they use to screen new biocatalyzed reactions. Biocatalysis = big business for the pharma world. The recent Codexis / Merck partnership for HCV drug boceprevir brought forth an enzyme capable of asymmetric amine oxidation. Directed evolution of an enzyme made sense here, since they knew their target structure, but what if we just want to see if microbes will alter our molecules? Enter the labeled substrates: the researchers remark that they provide an “unbiased approach to biocatalysis discovery.” They’re not looking to accelerate a certain reaction per se, but rather searching for any useful modifications using the 13C “detector” readout. One such labeled substrate, N-(13C)methylindole, shows proof-of-concept with their bacterial library, producing two different products (2-oxindole and 3-hydroxyindole) depending on the amount of oxygen dissolved in the broth. NMR autosamplers make reaction monitoring a snap, and in short order, the scientists show biotransformations of ten more indole substrates. This paper scratches multiple itches for various chem disciplines. Tracking single peaks to test reactions feels spookily close to 31P monitoring of metal-ligand catalysis. Organickers, no strangers to medicinally-relevant indole natural products, now have another stir-and-forget oxidation method. Biochemists will no doubt wish to tinker with each bacterial strain to improve conversion or expand scope. The real question will be how easily we can incorporate 13C labels into aromatic rings and carbon chains, which would greatly increase the overall...

Read More

#ASCO12 Data Digest: Overcoming Resistance in Metastatic Melanoma

The following is a guest post from Sally Church (known to many in the twittersphere as @MaverickNY), from the Pharma Strategy Blog. Not long ago, metastatic melanoma was considered a graveyard for clinical research. But last year brought a major breakthrough in treating skin cancer: the approval of Roche’s Zelboraf (vemurafenib), a small molecule that has proven highly effective at treating the roughly 50% of the patient population that carry the BRAFV600E mutation. However, Zelboraf has limitations. Patients’ disease eventually becomes resistant to the drug and the lesions caused by the skin cancer tend to return after 6 to 9 months. At the American Society of Clinical Oncology (ASCO) meeting earlier this month, the big two questions on cancer specialists’ minds were: what are the mechanisms of resistance and how can we develop strategies to overcome them? An amazing thing about current melanoma research is that several physician-scientists involved in the clinical trials are also actively involved in translational research–this is sadly the exception rather than the rule, in oncology. But the connection between basic science and bedside has meant new targets are being identified and quickly tested in the clinic. One potential target recently discovered was MEK, a kinase that sits along the same signaling pathway as BRAF. When BRAF activity is turned off by Zelboraf, cancer finds a way to compensate for the loss by exploiting other kinases in the pathway. Researchers think that by combining a BRAF inhibitor with a MEK inhibitor, the pathway might be more comprehensively shut down than by either alone. Consequently, there was a tremendous amount of buzz around a melanoma trial that looked at combining a BRAF inhibitor, GSK2118436 (dabrafenib), and a MEK 1/2 inhibitor, GSK1120212 (trametinib). Previous studies have shown that given alone, dabrafenib could result in solid response rates of 59%; trametinib, meanwhile, produced a 25% response rate when given as a single agent. Jeffrey Weber from Moffitt Cancer Center in Tampa presented the results of the complex phase I/II study, which included melanoma patients with either the BRAFV600 E or K mutation who had not undergone treatment of any kind. The hope was that by suppressing the MAP kinase-dependent resistance mechanisms, patients would enjoy three kinds of improvements over current treatment: 1) Improved progression-free survival (PFS), response rate, and survival 2) Prolonged duration of response 3) Decreased incidence of BRAFi-induced proliferative skin lesions An impressive waterfall plot of tumor shrinkage for patients (n=77) with the BRAFV600K mutation drew gasps from the audience – only four patients failed to respond to the combination, while the majority had a response of 30% or better. This isn’t something you see every...

Read More

Merck Jumps into Antibody-Drug Conjugates With Ambrx Deal

Merck today has jumped into what has become one of the hottest areas in oncology, antibody-drug conjugates, through a deal with San Diego-based Ambrx. Merck will pay $15 million upfront and up to $288 million in milestones for access to Ambrx’s site-specific protein conjugation technology. Coincidentally, on the cover of today’s magazine, we take a look at the future of antibody-drug conjugate technology. Although people have been working on ADCs for three decades, interest in the approach has reached fever pitch after last year’s approval Seattle Genetics’ lymphoma drug Adcetris and the recent hubbub at ASCO over positive interim Phase III data for Genentech’s T-DM1. The idea behind ADCs is simple: use a targeted antibody to deliver a highly potent chemotherapeutic to a cancer cell, sparing healthy cells. But current ADC technology has limitations. This week’s cover story looks at efforts to improve upon each component—the antibody, the small molecule, and the “linker” that connects the two. Ambrx is focused on the antibody, using site specific protein conjugation technology to better control how many and where small molecules are placed on an antibody. Currently, companies manufacturing ADCs (most using technology from Seattle Genetics or ImmunoGen) wind up with a heterogenous product—each ADC has anywhere from zero to eight small molecules attached to the protein, but on average, 3.5 to four small molecule “payloads” linked. The placement of the payloads on the antibody also varies, leading to families of conjugates. As I explain in today’s story, even among the ADCs with four small molecules attached, some have all the cytotoxins clustered in one region, but they might be spread out on others. Ambrx incorporates a nonnatural amino acid into the antibody to allow precise placement of the drug payload. As I explain: Ambrx can insert p-acetyl-phenylalanine onto two sites of the antibody. The phenyl- alanine derivative has been modified to include a ketone that acts as a functional group for conjugation to the linker and small molecule. Although Ambrx can attach more than two chemistry “handles” to the antibody, its studies have shown that two small molecules make the most sense. “You really want to be mindful about preserving the native structures and function of the antibody, while trying to optimize therapeutic activity,” says Chief Technology Officer Ho Cho. “The more you stray away from that, the more risks there are in drug development.” The beauty of site-specific conjugation, researchers say, is that it allows them to me- thodically determine which ADC variety is the most active. “We can specifically attach whatever payload-linker combo we wish and do quantitative experiments to find out how it works,” Cho says. His team...

Read More

Epizyme & Celgene to Develop Epigenetics-Based Cancer Drugs

Cambridge, Mass.-based Epizyme has scored $90 million upfront as part of a broad cancer drug development pact with Celgene. The deal adds to a spate of lucrative pacts to find compounds to modulate epigenetic targets, or enzymes that control gene expression without altering the underlying DNA. As we wrote in last week’s cover story, DNA carries the instructions for assembling all of life’s essential building blocks, but epigenetics dictates how and when that DNA is put to work. Recently, companies have made significant process in understanding the complex biology behind epigenetic processes, while also figuring out how to design compounds that can potently block epigenetic enzymes. With the science and business rationale for pursuing epigenetic targets dovetailing, big pharma and big biotech alike are forging deep ties with the handful of companies with expertise in the field. Under the three-year deal announced today, Celgene has the right to opt-in to the ex-U.S. rights for any unencumbered histone methyl transferase program at Epizyme. Eisai currently has the rights to Epizyme’s EZH2 inhibitor, while GlaxoSmithKline has a deep collaboration with Epizyme against undisclosed targets that would be excluded from today’s pact with Celgene. Epizyme says the partnership makes sense because Celgene shares “our vision in oncology and epigenetics,” says Epizyme’s president and CEO Robert J. Gould. “That’s been a fundamental bedrock of our partnering strategy–to partner with people who share our enthusiasm for this space.” Indeed, Celgene has long played in the epigenetics space, boasting two of the four currently marketed drugs that act on epigenetic targets. However, Celgene’s drugs, Istadax and Vidaza, hit first-generation epigenetic targets. Epizyme’s activities, meanwhile, center on one of the next waves of epigenetic targets: a family of enzymes called histone methyltransferases (HMTs). Of the 96 members of that family, Epizyme has identified roughly 20 HMTs for which there is a clear link to a specific form of cancer, Gould says.  To date, the company has two compounds—the EZH2 inhibitor partnered with Eisai, and a DOT1L inhibitor—in preclinical studies. (Check out last week’s cover story on epigenetics for more on how Epizyme went about discovering those two compounds.) Celgene is kicking off the pact by opting into the inhibitor of DOT1L, an HMT that is implicated in mixed lineage leukemia, a rare subtype of the blood cancer that the Leukemia and Lymphoma Society says affects about 1,500 new patients in the U.S. each year. With each program thereafter that Celgene buys into, Epizyme could score up to $160 million in milestone payments. The cash influx, coupled with the U.S. rights to the programs, “positions us nicely to maintain our independence, but also control our own future as a...

Read More