Cantley Talks Pfizer CTI Collaboration

As drug companies forge closer ties with academic researchers, the value of pharma-academia partnerships continues to be cause for much debate (see here, here,  here, and here for more on that). We’ve watched the evolution of these collaborations with interest, and as part of our ongoing coverage, this week’s issue brings an in-depth look at the mechanics of Pfizer’s Centers for Therapeutic Innovation, its network of academic partners centered on hubs in San Francisco, New York, Boston, and San Diego. But much of our focus has been on what drug companies can gain from deeper ties with academia. There’s another side to the coin: what the academic lab gains from teaming up with industry. While visiting Pfizer’s Boston CTI, I was glad to have a long chat with Harvard’s Lewis Cantley, known in cancer research circles for the discovery of the PI3K pathway, about why it made sense to link up with Pfizer. Cantley has had many pharma partnerships, was a founder of Agios Pharmaceuticals, and has sat on the boards of other start-ups. As such, I was curious what made him want to turn to Pfizer for this particular project—developing a drug against a cancer target discovered in his lab–rather than go at it alone, or try to spin out another company. Cantley conceded that his lab could have plugged away at the target for several years and eventually come up with something promising. But the target requires an antibody, and his lab is more experienced at discovering small molecules. Pfizer, meanwhile, could step in with expertise and technology that they otherwise would never have access to, significantly speeding up the drug discovery process. Further, Pfizer made teaming up easy. “The legalities of conflict of interest issues and IP issues had all been addressed with negotiations between Harvard and Pfizer before they even solicited proposals,” Cantley says. “To me, this was huge.” He notes that past partnerships with industry have involved at least a year of negotiating before anyone gets down to doing business—or, as it may be, science. Another positive was that working with Pfizer meant researchers in his lab could continue to be involved with the project. When Cantley became a founder of Agios, which focuses on developing drugs that interrupt cancer cell metabolism, he could no longer ethically allow students in his lab work on that aspect of the science. But under the Pfizer pact, post-docs can continue to explore the drug development as well as any basic biological questions that may arise. Lastly, Cantley was attracted by the facility with which Pfizer and academic scientists could interact. As it turns out, Cantley’s labs are...

Read More

After Nutley Closure, Roche Picks NYC For East Coast R&D Site

Just months after announcing it would close its storied Nutley, N.J., R&D site, Roche said today that it will open a translational clinical research center at New York City’s Alexandria Life Sciences Center. The move means three big pharma firms will soon be enjoying a view of the East River: Lilly was the flagship tenant when two years ago it moved some 140 scientists from ImClone’s lower Manhattan labs into the sparkling new site. Pfizer later chose the Alexandria center for the New York hub of its Centers for Therapeutic Innovation, a unit that teams Pfizer scientists with academic scientists. When Roche said it was shutting down the Nutley site, it said it was in search of an East Coast location for a much smaller research footprint. Some had initially speculated that Cambridge, Mass., would be the obvious choice for Roche, as most pharma companies have shifted their main East Coast R&D to the Boston area. More recently, it emerged that Roche was deciding between two locations in NY and N.J. Today’s release indicates that Roche plans to stick around N.Y. for awhile: it has signed an 11-year lease at the Alexandria Center. Does this mean NYC, which has long struggled to attract pharma and biotech researchers to its fair streets, is starting to see some momentum in the life...

Read More
Trouble Brewing for New HCV Meds
Aug24

Trouble Brewing for New HCV Meds

In a blow to the Hepatitic C drug development arena, Bristol-Myers Squibb last night pulled the plug on BMS-986094, an NS5B inhibitor in mid-stage trials. The decision comes just weeks after the company reported a patient suffered from heart failure during a Phase II study of the compound. Nine patients were eventually hospitalized, with varying symptoms of kidney and heart toxicity, according to BMS’s release (See more coverage by Adam Feuerstein at The Street and by Andrew Pollack at the NYT) BMS-986094? You might know this molecule better as Inhibitex’s former nucleoside INX-089. The molecule came to BMS through its $2.5 billion purchase of Inhibitex in 2011, as we wrote last year here at the Haystack. The molecule belongs to a family of new nucleosides with fairly common structural motifs: a central sugar appended to a nitrogen heterocycle (usually purine- or uracil-based) and an elaborate phosphoramidate prodrug. These new drugs’ similarities may also prove to be their Achilles heel – Idenix Pharmaceuticals announced an FDA-requested partial clinical hold on their IDX-184 lead. This cautious approach aims to protect patients; though the drugs are similar, 184’s main structural difference – a thioester-based, slightly more-polar prodrug – seems to be enough to distance it from the cardiac side-effects seen with BMS-986094. For a fairly in-depth look at the chemistry behind these inhibitors, as well as dozens of other analogues that never made it to prime time, check out US Patent 7,951,789 B2, issued to Idenix just last...

Read More

What Pfizer’s Bapineuzumab Failure Means for Parkinson’s Disease Research

The spectacular—and largely anticipated—failure of the Alzheimer’s treatment bapineuzumab has caused an outpouring of stories questioning what went wrong and what it means about pharma’s approach to R&D. Pfizer, Johnson & Johnson, and Elan, the developers of bapineuzumab, are taking a beating in the press for investing so heavily, not to mention raising the hope of so many patients, in a therapy that had not shown strong signs of efficacy in early trials. Most stories are focused on the implications for Alzheimer’s research and, more generally, the pharma business model given the hundreds of millions of dollars the three companies sank into bapineuzumab. But news of its failure also resonated in research communities focused on other neurogenerative diseases, like Parkinson’s disease and Huntington’s disease, marked by protein aggregation. I checked in with Todd Sherer, CEO of the Michael J. Fox Foundation to understand what Parkinson’s researchers might learn from the disappointing data from bapineuzumab. Sherer believes there are scientific and business ramifications of the results, both of which might have a chilling effect on neuroscience research. From a scientific perspective, some are declaring the failure of bapineuzumab the nail in the coffin of the amyloid hypothesis, the theory that the beta-amyloid, the protein responsible for the plaque coating the brains of people with Alzheimer’s disease, is the primary cause of neuron death in the disease. Bapineuzumab, which blocks beta-amyloid, was one of a handful of treatments to test the hypothesis in the clinic. So far, every drug to reach late-stage trials has failed. Sherer isn’t convinced bapineuzumab is the nail in the amyloid hypothesis coffin. “Obviously the results are very disappointing given the level of interest and investment that’s been put forward for this therapy,” Sherer says. “I don’ think that the result is a definitive answer to the amyloid hypothesis because there are many different ways to target amyloid aggregation therapeutically.” Parkinson’s researchers are also trying to learn from the setbacks in Alzheimer’s and apply that to studies of drugs targeting alpha synuclein, the protein that clumps together in the brains of people with Parkinson’s disease. “One of the things that is a learning for us in Parkinson’s is really to try to be as smart and informative as we can be in the early clinical trials,” he says. In Alzheimer’s, for example, the Alzheimer’s Disease Neuroimaging Initiative (ADNI), a collaboration between government, academic, and industry scientists, was formed in 2003 to identify biomarkers that can be used both in the diagnosis of the diseases and in the clinical development of Alzheimer’s drugs. However, Sherer points out that while progress in the ADNI initiative has been promising, it...

Read More

BMS Cuts R&D Jobs

The ax is falling on more pharma R&D jobs. Earlier today, Derek Lowe brought word from readers that research jobs were being cut at Bristol-Myers Squibb. The company just confirmed that “fewer than 100” positions were being eliminated in the U.S. Here’s the official word from BMS: “Bristol-Myers Squibb is strategically evolving the company’s Research focus to ensure the delivery of a sustainable, innovative drug pipeline in areas of serious unmet medical need and potential commercial growth. The Company is aligning and building internal capabilities to support the evolution of its Research focus. In doing so, certain research areas will be streamlined and there will be investment and growth in other areas. This strategic evolution has resulted in job eliminations in the short term to allow longer term investment. This initiative will result in a reduction in employee headcount of fewer than 100 people in an R&D organization of more than 7,000 employees. Impacted employees were notified on August 1, 2012 and transitions will take place within two weeks of this date.” The company will not confirm whether they are, as Derek’s sources suggest, in the metabolic disease area or limited to New Jersey. If indeed they are all coming out of its N.J. labs, today’s announcement will add to challenging times for the state.  As we wrote last month after Roche announced plans to shutter its Nutley site, costing some 1,000 jobs, the number of drug industry jobs in N.J. fell by 22.4% between 2007 to 2010, according to a report by Battelle and the Biotechnology Industry...

Read More
Rigged Reactions: Biocatalysis Meets 13C NMR
Jul19

Rigged Reactions: Biocatalysis Meets 13C NMR

When you think of reaction screening, what comes to mind? Most would say LC-MS, the pharma workhorse, which shows changes in molecular polarity, mass, and purity with a single injection. Some reactions provide conversion clues, like evolved light or heat. In rare cases, we can hook up an in-line NMR analysis – proton (1H) usually works best due to its high natural abundance (99.9%). Please welcome a new screening technique: 13C NMR. How can that work, given the low, low natural abundance of ~1.1% Carbon-13? Researchers at UT-Southwestern Medical Center have the answer: rig the system. Jamie Rogers and John MacMillan report in JACS ASAP 13C-labeled versions of several common drug fragments, which they use to screen new biocatalyzed reactions. Biocatalysis = big business for the pharma world. The recent Codexis / Merck partnership for HCV drug boceprevir brought forth an enzyme capable of asymmetric amine oxidation. Directed evolution of an enzyme made sense here, since they knew their target structure, but what if we just want to see if microbes will alter our molecules? Enter the labeled substrates: the researchers remark that they provide an “unbiased approach to biocatalysis discovery.” They’re not looking to accelerate a certain reaction per se, but rather searching for any useful modifications using the 13C “detector” readout. One such labeled substrate, N-(13C)methylindole, shows proof-of-concept with their bacterial library, producing two different products (2-oxindole and 3-hydroxyindole) depending on the amount of oxygen dissolved in the broth. NMR autosamplers make reaction monitoring a snap, and in short order, the scientists show biotransformations of ten more indole substrates. This paper scratches multiple itches for various chem disciplines. Tracking single peaks to test reactions feels spookily close to 31P monitoring of metal-ligand catalysis. Organickers, no strangers to medicinally-relevant indole natural products, now have another stir-and-forget oxidation method. Biochemists will no doubt wish to tinker with each bacterial strain to improve conversion or expand scope. The real question will be how easily we can incorporate 13C labels into aromatic rings and carbon chains, which would greatly increase the overall...

Read More