↓ Expand ↓
» About This Blog

What Pfizer’s Bapineuzumab Failure Means for Parkinson’s Disease Research

The spectacular—and largely anticipated—failure of the Alzheimer’s treatment bapineuzumab has caused an outpouring of stories questioning what went wrong and what it means about pharma’s approach to R&D. Pfizer, Johnson & Johnson, and Elan, the developers of bapineuzumab, are taking a beating in the press for investing so heavily, not to mention raising the hope of so many patients, in a therapy that had not shown strong signs of efficacy in early trials.

Most stories are focused on the implications for Alzheimer’s research and, more generally, the pharma business model given the hundreds of millions of dollars the three companies sank into bapineuzumab. But news of its failure also resonated in research communities focused on other neurogenerative diseases, like Parkinson’s disease and Huntington’s disease, marked by protein aggregation.

I checked in with Todd Sherer, CEO of the Michael J. Fox Foundation to understand what Parkinson’s researchers might learn from the disappointing data from bapineuzumab. Sherer believes there are scientific and business ramifications of the results, both of which might have a chilling effect on neuroscience research.

From a scientific perspective, some are declaring the failure of bapineuzumab the nail in the coffin of the amyloid hypothesis, the theory that the beta-amyloid, the protein responsible for the plaque coating the brains of people with Alzheimer’s disease, is the primary cause of neuron death in the disease. Bapineuzumab, which blocks beta-amyloid, was one of a handful of treatments to test the hypothesis in the clinic. So far, every drug to reach late-stage trials has failed.

Sherer isn’t convinced bapineuzumab is the nail in the amyloid hypothesis coffin. “Obviously the results are very disappointing given the level of interest and investment that’s been put forward for this therapy,” Sherer says. “I don’ think that the result is a definitive answer to the amyloid hypothesis because there are many different ways to target amyloid aggregation therapeutically.”

Parkinson’s researchers are also trying to learn from the setbacks in Alzheimer’s and apply that to studies of drugs targeting alpha synuclein, the protein that clumps together in the brains of people with Parkinson’s disease. “One of the things that is a learning for us in Parkinson’s is really to try to be as smart and informative as we can be in the early clinical trials,” he says.

In Alzheimer’s, for example, the Alzheimer’s Disease Neuroimaging Initiative (ADNI), a collaboration between government, academic, and industry scientists, was formed in 2003 to identify biomarkers that can be used both in the diagnosis of the diseases and in the clinical development of Alzheimer’s drugs. However, Sherer points out that while progress in the ADNI initiative has been promising, it was started too late for many companies, which had already jumped into larger clinical trials of Alzheimer’s therapies.

The Fox Foundation already has a biomarker initiative for Parkinson’s ongoing. The goal is that when the first clinical trial for a vaccine alpha-synuclein, to be led by the Austrian biotech Affiris with support from the non-profit, starts later this year, the tools will be in place to conduct a highly informative study.

On the business side, Sherer worries about the impact of more bad news in Alzheimer’s at a time when many companies are already moving out of drug discovery in many areas of neuroscience. “One of the concerns I have is that investors like big pharma companies and others are already showing a trend towards risk aversion,” Sherer says. “That will just get reinforced by these large trials not succeeding.”

Although basic research is uncovering new therapeutic avenues in diseases like Alzheimer’s and Parkinson’s, companies may decide the bar for understanding the biological relevance for each drug target needs to be set much higher. But when it comes to Parkinson’s disease, he adds, “we are not going to have the luxury of knowing everything about the disease and the biochemical pathways before we need to push forward with therapies.”

One hope Sherer has is that companies will make much of the data from these failed trials available to the research community to try to understand what didn’t work, and what the results really mean. “It’ll be a goldmine of information for other Alzheimer’s trials, but also for other genetic diseases like Parkinson’s disease and Huntington’s disease.”

 

No Comments

Leave a Reply


− three = 4