↓ Expand ↓
» About This Blog

Epizyme & Celgene to Develop Epigenetics-Based Cancer Drugs

Cambridge, Mass.-based Epizyme has scored $90 million upfront as part of a broad cancer drug development pact with Celgene. The deal adds to a spate of lucrative pacts to find compounds to modulate epigenetic targets, or enzymes that control gene expression without altering the underlying DNA.

As we wrote in last week’s cover story, DNA carries the instructions for assembling all of life’s essential building blocks, but epigenetics dictates how and when that DNA is put to work. Recently, companies have made significant process in understanding the complex biology behind epigenetic processes, while also figuring out how to design compounds that can potently block epigenetic enzymes. With the science and business rationale for pursuing epigenetic targets dovetailing, big pharma and big biotech alike are forging deep ties with the handful of companies with expertise in the field.

Under the three-year deal announced today, Celgene has the right to opt-in to the ex-U.S. rights for any unencumbered histone methyl transferase program at Epizyme. Eisai currently has the rights to Epizyme’s EZH2 inhibitor, while GlaxoSmithKline has a deep collaboration with Epizyme against undisclosed targets that would be excluded from today’s pact with Celgene.

Epizyme says the partnership makes sense because Celgene shares “our vision in oncology and epigenetics,” says Epizyme’s president and CEO Robert J. Gould. “That’s been a fundamental bedrock of our partnering strategy–to partner with people who share our enthusiasm for this space.”

Indeed, Celgene has long played in the epigenetics space, boasting two of the four currently marketed drugs that act on epigenetic targets. However, Celgene’s drugs, Istadax and Vidaza, hit first-generation epigenetic targets. Epizyme’s activities, meanwhile, center on one of the next waves of epigenetic targets: a family of enzymes called histone methyltransferases (HMTs). Of the 96 members of that family, Epizyme has identified roughly 20 HMTs for which there is a clear link to a specific form of cancer, Gould says.  To date, the company has two compounds—the EZH2 inhibitor partnered with Eisai, and a DOT1L inhibitor—in preclinical studies. (Check out last week’s cover story on epigenetics for more on how Epizyme went about discovering those two compounds.)

Celgene is kicking off the pact by opting into the inhibitor of DOT1L, an HMT that is implicated in mixed lineage leukemia, a rare subtype of the blood cancer that the Leukemia and Lymphoma Society says affects about 1,500 new patients in the U.S. each year.

With each program thereafter that Celgene buys into, Epizyme could score up to $160 million in milestone payments.

The cash influx, coupled with the U.S. rights to the programs, “positions us nicely to maintain our independence, but also control our own future as a company,” Gould says. “We now have the runway to go pretty far with these programs.”

That independence is important aspect of Epizyme’s strategy of commercializing its cancer therapies in the U.S., a goal Gould says is attainable because HMT inhibitors will be used in highly specific, genetically-defined patient populations.

The Celgene deal also broadens Epizyme’s scientific horizons, Gould says. “This expands the depth of research we can do around histone methyl transferases specifically…but also gives us the opportunity to imagine what other approaches we might take that might be synergistic or additive to the HMT family.”

Gould is quick to note that in the near term, the company is focused on HMTs “until we prove these compounds are effective in these patients with genetically-defined cancer.”

Between its deals with GSK, Eisai, and Celgene, and its burgeoning pipeline, Epizyme will need to expand its operations. The current headcount stands at about 48, but Gould notes that going forward the small biotech will need to grow out its clinical development organization and, more modestly, its basic research activities.

 

 

 

No Comments

Leave a Reply


7 − = five