Celgene & Avila Forge Permanent Ties

Today brought a spate of M&A activity in the biotech space, with Amgen unveiling a $1.2 billion bid for Micromet, and Celgene agreeing to pay up to $925 million for Avila Therapeutics. Both deals brought the acquirer a drug in development to treat blood cancers, while also adding a platform technology to their research engines.

Being all about the chemistry, The Haystack is particularly interested in the Celgene/Avila deal, which involves covalent drug development technology. Celgene is paying $350 million upfront, with the promise of up to $195 million more if Avila’s lead covalent drug candidate, AVL-292, reaches the market. Pushing other covalent drugs through the pipeline could garner Avila shareholders another $380 million.

So what is a covalent drug, anyway? As C&EN’s Lila Guterman described last fall, covalent drugs form a permanent link with their target. By comparison, most conventional drugs are designed to reversibly bind to their targets—in other words, they can stick and “un-stick” to a protein.

The beauty of a covalent drug is that its specificity and potency means it can be given in low doses. As Guterman explains, patients only be given enough of the drug for molecule to reach each target protein molecule, and then another dose only when the body has generated more of that target protein. The low dose means less potential for drug-drug interactions and off-target effects.

Indeed, for years, scientists avoided developing covalent drugs out of fear that serious toxicity will arise if a covalent drug happens to permanently stick itself to the wrong protein. Check out Guterman’s piece for a cautionary toxicity tale from none other than “Rule-of-Five” inventor (and former Pfizer researcher) Christopher Lipinski.

The current generation of covalent drugs, however, is designed to assuage those fears through their highly selective and weakly reactive nature. Avila isn’t the only one banking on better molecular design leading to successful drugs: Zafgen’s obesity drug candidate ZGN433 also covalently binds to its target, an approach that—if it works—could enable it to sidestep the side effect issues that have plagued the obesity drug space.

So are these covalent drugs worth the price tag? Avila’s pipeline is relatively young, meaning there isn’t a lot of data to go on: AVL-292 is in Phase I studies in lymphomas; a compound targeting mutant EGFR is also in Phase I trials; meanwhile, two Hepatitis C drug candidates in preclinical studies. The company has also made public preclinical date on its PI3Kα-selective inhibitor (the same target as Intellikine’s INK1117, one of the drivers behind Takeda’s $190 million acquisition of Intellikine.).

Author: Lisa Jarvis

Share This Post On

1 Comment

  1. Interesting. Another biotech with covalents in their pipeline is complexa (www.complexarx.com). Their molecules are mostly electrophilic nitro-alkenes that adduct thiols in targets such as PPARs, NFKB etc. Depending on exactly what amino acid is being adducted, and how the molecules select a motif within a protein, specificity is still a question – after all, something like 95% of proteins have at least one cysteine residue.