↓ Expand ↓
» About This Blog

Remedium Technologies Gets A Grip On Severe Bleeding

Maryland is serious about nurturing startups. Drahl/C&EN

In the last year we’ve covered many up-and-coming drugs for controlling the delicate balance between clotting and bleeding. But what happens when something—an injury or a major surgical procedure—overwhelms that system?

Controlling big bleeds is big business, from the battlefield to the operating room. This Monday, at the American Chemical Society’s Middle Atlantic Regional Meeting (MARM) in College Park, Maryland, I heard from Matthew Dowling, CEO of a startup looking to make its mark in that space. The company is called Remedium Technologies, and it’s developing chemically modified versions of a natural biopolymer to make improved materials for stanching blood flow.

Remedium is one of several companies getting on its feet with help from technology incubation programs the University of Maryland. Representatives from several of those companies, including Dowling, gave talks at a MARM symposium on the science of startups. Look here for the MARM session’s program- it includes other companies in the drug and vaccine space, including Azevan Pharmaceuticals (which C&EN wrote about in 2001 when it was called Serenix), Leukosight, and SD Nanosciences.

The biochemical pathway that regulates clotting can’t support severe injuries that lead to profuse bleeding, Dowling said Monday. While several treatments exist for this kind of severe injury, where sutures might not work to close a wound, they have drawbacks that Dowling thinks Remedium’s technology can address.

The company’s material of choice is chitosan, a biopolymer that can be scavenged from waste shells of shrimp or crabs. Chitosan wound dressings are already on the market, but they become saturated with blood and quit sticking to tissue after about 30 minutes, which can lead to more bleeding. As a bioengineering graduate student at Maryland, Dowling developed an alternative chitosan modified with hydrophobic groups that help it stick to tissues longer. This modified biomolecule is the basis of Remedium’s technology. The company likens the material to Velcro because it is the sum total of weak interactions between hydrophobic groups and tissue that help the material stick around, Dowling explains. Once the wound has had time to heal, the material can be gently peeled away.  The chemical structure of Remedium’s hydrophobic groups is proprietary; Dowling used benzene n-octadecyl tails in graduate school.

The company has two products in development- a modified chitosan “sponge” and a spray-on blood clotting foam. Neither of those products is yet available for purchase. In College Park, Dowling showed a video demonstrating how the modified chitosan makes blood congeal quickly, and how the effect can be reversed by applying alpha-cyclodextrin. In a second video, the sponge is tested on a bleeding pig that’s had a major blood vessel cut open. This presentation is similar to what Dowling gave Monday.

Dowling has been running Remedium full-time since he obtained his doctorate from Maryland in 2010—the company was founded while he was still in graduate school, and several classmates are also in the company’s management. The company has an exclusive license for the chitosan technology from the university, and has four patents pending. It has also won several business competitions, including Oak Ridge National Laboratory’s (ORNL) 2010 Global Venture Challenge. Dowling says the university’s technology incubation resources are what made it possible for him to start a company while still in grad school, from providing office space in a building just off campus, to regular meetings with staffers knowledgeable about navigating the regulatory and funding process.

No Comments

Leave a Reply


3 + seven =