TEDMED: Andrew Read’s Five Tips For Keeping Superbugs At Bay
Apr13

TEDMED: Andrew Read’s Five Tips For Keeping Superbugs At Bay

Researchers may like to think they're pretty smart, but you could argue that bacteria have also got some bragging rights. Every day, microbes develop resistance to even the most powerful antibiotics scientists have developed. Andrew Read thinks evolution is the best lens for staring down the superbugs. He took the stage Thursday at TEDMED, where he warned, "we're picking a fight with natural selection." "Picking a fight without Darwin is like going to the moon without Newton," Read added. "We are in the dark ages when it comes to evolutionary management." Read, director of Penn State University's Center for Infectious Disease Dynamics, sat down with me on Thursday and shared a few principles he thinks the scientific community should keep in mind in order to keep antibiotic resistance in check. Here are his five tips for would-be superbug slayers. Get smart with the drugs you've already got. "We can't rely on a continual supply of new drugs," Read said. Many firms have already exited antibiotic research, he notes. "You can see that the markets aren't good enough right now to drive innovation," since new antibiotics are precious and used only for patients' most severe infections rather than being prescribed widely. Read says firms should continually evaluate dosing and combination strategies with established drugs in order to stave off resistance. "I'm not saying we shouldn't discover new antimicrobials," Read stressed. "In some situations, like malaria, it's really critical. But we don't want to put all our eggs in that basket." Learn from what works. "I think magic bullets are the exception rather than the rule," Read says. But researchers should focus on why wildly successful therapies were so. "Why was that pathogen unable to get around the smallpox vaccine? Why is chloroquine still working against some malarias in some parts of the world when it's has failed miserably in others?" Read asked. Make the right matches for combination therapies. Read notes that some antimalarial drug combinations have consisted of drugs with markedly different half-lives. In effect, once the first drug has left the human body, all that's left is the other drug, a monotherapy. "And that's dangerous," a breeding ground for resistance, Read cautions. "You want to be combining drugs that have similar half-lives." Researchers should also think about whether their antibiotics become more lethal to microbes when used in combination, or less lethal, Read says. Evidence suggests that less lethal is better, he says. According to work from Roy Kishony's lab at Harvard Medical School, if an antibiotic combo is less lethal, once resistance develops to one drug (call it drug A) in the pair, then drug B can...

Read More
TEDMED and Alzheimer’s: Gregory Petsko, Reisa Sperling, and the next Al Gore
Apr12

TEDMED and Alzheimer’s: Gregory Petsko, Reisa Sperling, and the next Al Gore

Gregory Petsko knows why he came to TEDMED. "I'm looking for Al Gore," he told me flat-out over lunch. Folks who know Petskoknow the former Brandeis University biochemistry department chair isn't one to mince words. And he's nailed the reason why an academic might want to look outside traditional conferences and soak up some of the TEDMED aura. He's looking for a charismatic champion to take up a biomedical cause: in Petsko's case, it's support for research in Alzheimer's disease. Petsko and Reisa Sperling, director of the Center for Alzheimer's Research and Treatment at Brigham and Women’s Hospital, talked about Alzheimer's at TEDMED on Wednesday. Both talks were cast as calls to action. Just consider the introduction Petsko got from TEDMED chair and Priceline.com founder Jay S. Walker: "This is a man who hears a bomb ticking." Alzheimer's statistics are sobering and Petsko used them to dramatic effect. People who will reach 80 by the year 2050 have a 1 in 3 chance of developing the disease if nothing is done, he told the audience. "And yet I hear no clamor," he said. "I hear no sense of urgency." Petsko shared some not-yet-published work with TEDMED's audience. His team is looking at a less-trod path of Alzheimer's biology-- the role protein sorting defects might play in the development of the disease. Their focus is on a protein complex called the retromer, which Petsko likened to a truck driver, because its job is to sort and send proteins either to the golgi--the cell's recycling center, or to the lysosome for snipping. For Alzheimer's, the thought is that improper sorting can make the difference between normalcy and an accumulation of amyloid-beta, the protein thought to be a key player in developing the disease. Petsko told me that his collaborator, Scott Small of Columbia University Medical School, discovered that retromer played a role in Alzheimer's (Neuron, DOI: 10.1016/j.neuron.2006.09.001).   Petsko's team has developed small molecules that increase the level of active retromer complex in the cell. So far, their agents have been evaluated in cultured cells. Tests in mice are ongoing. It's important for the Alzheimer's field to look beyond amyloid-beta, says Kevin Sweeney, a TEDMED attendee who teaches at the University of California, Berkeley's Haas School of Business and is part of the Rosenberg Alzheimer's Project, a nascent organization that supports alternative avenues in Alzheimer's research. "For a while, at least, the Alzheimer's space looks like so many of the [clinical] trials have pursued a relatively narrow range of theories," he says. Even though those theories aren't fully played out, "we still think it's useful to start looking for other strands,"...

Read More
Francis Collins At TEDMED – Repurposing Drugs, Replacing Animal Models, Rocking Out
Apr11

Francis Collins At TEDMED – Repurposing Drugs, Replacing Animal Models, Rocking Out

You know you're at an interesting conference when the director of the NIH starts off his presentation with a guitar duet, and shares a session with Cookie Monster. But the organizers of TEDMED made a very deliberate decision in opening this year's conference with Francis Collins. This is the first year that the gathering of medical luminaries, artists, and design gurus (TED stands for Technology, Entertainment, Design) is taking place in Washington, DC, after moving from San Diego. It marks a philosophical shift for the organization, from TEDMED as idea incubator to TEDMED as inserting itself into the national conversation on health and medicine. What better way to do that then bringing in the head of the biggest biomedical funding agency? Collins wants to compress the time it takes to get a drug development pipeline, and make the pipeline less leaky. This isn't news to folks around the pharma blogosphere, including here at the Haystack, Ash at Curious Wavefunction and Derek Lowe, who've followed last year's announcement of NIH's venture for drug discovery, the National Center for Advancing Translational Sciences. Folks have expressed some concerns about the concept, and its emphasis on the promise of gene-based drug discovery. But, as Derek noted, the fact of the matter is that everyone in drug discovery wants the things Collins wants, so there's a measure of goodwill for the venture too. Collins spent his time on the TEDMED stage emphasizing two things: drug repurposing and developing high-tech cellular solutions to supplement and replace often-imperfect animal models. On the tech side, Collins showcased the Harvard-based Wyss Institute's lung-on-a-chip, which combines tissue engineering and electronics to mimic the interface between the lung's air sacs and capillaries (Science, DOI: 10.1126/science.1188302). He said that technologies like this suggest viable alternatives to animal testing are possible. When New Scientist reported on the lung-on-a-chip in 2010, researchers praised it as a step in the right direction, but cautioned that immortalized cell lines, such as those on the chip, don't neccesarily behave like primary cells from patients. Collins also noted that it might be possible to use such devices with patients' own cells someday. On the repurposing side, Collins cited an article on the topic in Nature Reviews Drug Discovery (DOI: 10.1038/nrd3473), and alluded to lonafarnib (SCH 66336), a farnesyltransferase inhibitor that was originally designed to be part of cancer-treatment cocktails. It didn't pan out as a cancer drug, Collins said, but now clinical trials are underway to test whether the drug is effective at countering a rare mutation that causes Hutchinson-Guilford progeria, an ailment that leads to rapid aging in children. Collins shared the stage with 15-year-old Sam,...

Read More