Need A Centrifuge? Print One Out
Feb22

Need A Centrifuge? Print One Out

In this week’s issue of C&EN, I wrote about how 3-D printing fever has taken hold of some folks in academia. Sure, scientists and engineers COULD keep a 3-D printer in the lab strictly for printing out a molecular model, a prototype, or even an intricate lab logo. But they're starting to do much more with the machines. As Lee Cronin, a chemist at Scotland’s University of Glasgow, told me, in the early days of 3-D printing, “people thought it was cool but gimmicky.” Now, though, they’re beginning to use the technique to solve problems, he added. In the story, I describe how some scientists have used 3-D printers to make lab equipment such as centrifuges, funnels, lab jacks, and electrophoresis gel combs. These early adopters claim that the machines, which build solid objects layer by layer from materials like plastics and ceramic powders, can save labs thousands of dollars. And, they say, 3-D printers help foster an open-access scientific community that will speed the progress of research. One research group I didn’t get to mention in my story is that of Simon J. Leigh, a chemist-turned-engineer at the U.K.’s University of Warwick. Leigh and his team are developing new materials for 3-D printers, with the goal of eventually incorporating them into devices for the lab and beyond. For instance, late last year, the researchers published a PloS One paper detailing how they concocted “carbomorph,” a material made of the thermoplastic polycaprolactone and 15 wt% carbon black. “The aim of the project was to develop a material that could go into a printer that’s off the shelf,” Leigh says. In addition to being electrically conductive, carbomorph had the added benefit of being extrudable by a standard low-cost 3-D printer (they used a Bits from Bytes 3000). Leigh’s team demonstrated that the substance could also be incorporated into several devices. One of these instruments was an electronic interface. The researchers added carbomorph buttons to an electrical circuit: When a user pressed one of them, its capacitance increased and triggered an electrical signal. Being able to embed sensors like these anywhere on a device rather than adding them on at defined spots in post-production could be extraordinarily useful, Leigh says. In one, perhaps gimmicky, example, Leigh and his team printed sensor buttons into a video-game controller. “But there’s no reason why the same process could not be used to make custom interfaces for scientific equipment,” he says.   In 2011, the research team also developed a magnetic material for 3-D printing that it used to manufacture a flow sensor. Specifically, the scientists added magnetite nanoparticles to a resin matrix and printed a tiny...

Read More
Profile: Alfredo M. Ayala Jr., Disney Imagineer
Mar30

Profile: Alfredo M. Ayala Jr., Disney Imagineer

Posted on behalf of Carmen Drahl Alfredo M. Ayala Jr. majored in chemistry in college, but these days he dabbles in a very special kind of alchemy. He's been with Walt Disney Imagineering Research and Development for over 15 years, where his job is to create new illusions and experiences for Disney park guests. And as he explained Sunday at the ACS national meeting in Anaheim, it was organic chemistry that got his foot in the door. Ayala said he fell in love with science as a boy when he saw "Antimatter", an animated look at the atomic world by Carlos Gutierrez, a UCLA film major turned chemistry major and organic chemistry professor. As it so happened, Gutierrez became Ayala's mentor when the young Ayala came to Cal State L.A., through Gutierrez's program for engaging junior high and high school students interested in biomedical sciences. At Cal State L.A., Ayala followed his interests in chemistry and in computers, taking engineering coursework in addition to chemistry. He was an undergraduate researcher in Gutierrez's organic chemistry lab when he applied for an internship with the Disney company. Disney asked its prospective interns to write a paragraph about why they wanted the gig. But instead of just gushing about how cool it would be to work with the company, Ayala took a different tack. He knew Imagineers were looking to reformulate the skin material for the Pirates of the Caribbean attraction, which at the time contained chromium, a non-chlorine scavenger, as a heat stabilizer. By not having a chlorine scavenger, hydrochloric acid was being produced in reactions with water, which in turn corroded parts that would need to be replaced periodically. Ayala sent Disney three proposals for alternative skin formulas, based on some chemistry he had done forming precursors to analogs of 18-crown-6 ethers in the Gutierrez group. In this 1995 Tet. Lett. paper the group begins with some tin-containing acetals and forms two different crown ether precursors depending on whether they add 1,2-dibromoethane or 2-chloroethanol. “Note we were scavenging chlorine and bromine- this is how I got the idea,” Ayala says. His ingenuity on the application paid off in the form of an interview. "That was what got me in," he says. He's been with Disney ever since. "You'd be surprised how much chemistry goes on at Disney," Ayala says. Building one Disney attraction takes experts in 140 disciplines, from mechanical engineering to art. And chemistry challenges are everywhere at the parks, Ayala says. Research in materials science for skin and other applications is an active area. "The skin formulation I worked on as an intern is obsolete," he says. An...

Read More