↓ Expand ↓

Category → Water

Fake Meat as Cleantech Investment

The New York Times today has a fascinating feature about a new crop of businesses developing better-tasting meat substitutes. According to the Times,

Demand for meat alternatives is growing, fueled by trends as varied as increased vegetarianism and concerns over the impact of industrial-scale animal husbandry on the environment. The trend has also attracted a host of unlikely investors, including Biz Stone and Evan Williams of Twitter, Bill Gates and, most recently, Li Ka-shing, the Hong Kong magnate.

It goes on to say that the sustainability boon of veggie-based protein over animal protein has also attracted venture firm Kleiner Perkins Caufield & Byers to the category.

Since I write about cleantech start ups and food, I figure this is an interesting market niche to examine. But my first question reading the story was, would I eat this? That is not very analytical.

The companies featured in the story are Beyond Meat, which makes a veggie protein chicken that apparently is indistinguishable from the real thing in a dish like chicken salad, Gardein, which makes products including – amazingly to me – fake fish, and Hampton Creek, a start up that has developed a versatile and healthy egg substitute made from Canadian yellow peas.

Setting aside my selfish question of whether these products would appeal to me, a non-vegetarian, I’m going to try to set the stage for an analysis of the likely success of these ventures. The companies state they are hoping to attract mainstream eaters. That means they will have to score a win on the three most important qualities for mainstream grocery shoppers: 1) Taste 2) Cost 3) Convenience.

The point of the Times story is that these up and comers are aiming to beat out today’s fake meat brands on taste and texture. Many fake meat products are easier to store and prepare than raw meat, so that’s a plus. That leaves cost – if they can sell the products for just a bit less than the real thing that would make a huge difference and would expand the market for fake meat.

To get the costs down while they scale production, firms like Beyond Meat will first have to appeal to the early adopter/healthy eater/vegan/vegetarian/flexitarian who is willing to try something new.

But while some shoppers may be swayed by sustainability claims, these technology-based firms will have to navigate the growing tide of shoppers of all types who eschew mystery products, high-tech food processing, and food additives such as colors, flavors, preservatives and even texturizers. Shoppers know that even natural flavoring additives may be chemically similar to MSG (particularly flavors derived from yeast). This crowd is likely to be close to a third of shoppers by the time these firms hit the mainstream. Foodies who already shun “highly processed” foods may be wary of high-tech meat substitutes.

What’s more, shoppers who choose fake meat for health reasons only may regress to “sustainably raised” animal products as our nutritional understanding of the effects of various types of fats grows more sophisticated.

But one fact in the article stood out – the current leader in fake meat, MorningStar Farms, has a whopping 60% of the market. This strongly suggests that there is room for a number of new entrants to take a healthy bite of that share. When it comes to food (as opposed to, say, renewable energy) people are very picky, and they like choices.

As for me, I say, bring on the “chicken” wings, the no-egg mayo, the “meat crumbles” chili. I’ll try anything once.

Speaking of picky eaters who are concerned about sustainability, check out this hilarious clip from the IFT show Portlandia:

http://youtu.be/ErRHJlE4PGI

 

Help Solve a Water Problem

With blogs, twitter, and e-mail, it’s pretty rare these days that I get a phone call from a reader. But yesterday I heard from an ACS member who has a sort of meta-problem. That is, he hopes to get some outside thinking to help him define his problem, as well as to point him in new directions for possible solutions.

Here’s the problem:

Fresh water is a scarce commodity in many places on the planet. Several dry-arid environments have industrial operations producing excess amounts of water. That water contains excess salts, boron, ammonia, silica, and other minerals. Current operational strategy is to inject the water into below-ground natural reservoir space but that option may be limited in the future. Alternatives to disposal revolve around traditional approaches to recycle or reuse that water but I’m seeking new thinking and brainstorming of even better ways to use, recycle, and/or a novel alternative scenario for the water.

With the drought in California, and the tightening of restrictions for industry’s use of water, this type of problem seems likely to pop up more and more frequently, though the specific quality issues vary from industry to industry.

Please send your thoughts and insights to

peter.vanvoris AT att DOT net 

Or feel free to hash out your thoughts, questions, or ideas in the comments section below. Once the problem has been looked at from several angles and better defined, it may appear on crowdsourcing websites like Innocentive.

 

And if you need a little clean water inspiration, you can read this week’s C&EN story on Beefed-up bacteria that get the lead out of water

Or a 2012 story on Treating Water From Hydraulic Fracturing

Or you can check out the website of Simbol Materials, which is scaling up its technology to mine hydrothermal brines for lithium, manganese, zinc, and potassium.

 

The Gut(microbe)less Gribble – Biofuel Hero?

Behold the Gribble – a true gutless wonder. The Gribble (pictured here) is a marine wood-boring creature of around 2 millimeters in size. Scientists at the UK’s Biotechnology and Biological Sciences Research Council have been spending quality time with the Gribble because of its exceptional innards.

The Gribble lives in the sea and eats wood. Image: Laura Michie, University of Portsmouth

The Gribble lives in the sea and eats wood. Image: Laura Michie, University of Portsmouth

The tiny animal eats wood that finds its way into the sea. The wood can come from mangrove swamps or wash into estuaries from land. Gribbles, also called ship borers, have also been known to chow on wooden sailing vessels (including, rather famously, those of the Columbus voyages). “I’m sure they’ve taken down a few pirate ships, too” says Simon J McQueen-Mason a BBSRC researcher and materials biology professor at the University of York.

Most critters that eat wood or other lignocellulose plant material rely on symbiotic relationships with a diverse population of gut microbes – called the microbiome – to break down the tough-to-digest meal. When news reports suggest that pandas may hold the key to biofuels breakthroughs because they can live on tough bamboo, it’s really the microbes, and the enzymes made by the microbes, that are of interest.

(You can read a C&EN cover story about pandas, microbiomes and biofuels )

But the Gribble has no microbiome. And it doesn’t have the squishy, absorptive digestive system that most animals have. In fact, it digests its meals of wood in a sterile, hard-sided chamber in its hind gut. McQueen-Mason likens the environment to “a steel container you might use in an industrial lab.”

Instead of microbial helpers, the gribble has a separate organ where it produces the key enzyme itself. Termites do not do this (they have microbes). The gribble “must use quite aggressive chemistry; the enzyme is so harsh that it would kill any microbes” that might otherwise occupy the space, McQueen-Mason says.

The research team found the mystery organ and looked at the genes expressed there. Many of them encoded instructions for making what is called GH7 cellulase. This is a family of enzymes that are normally found in wood-degrading fungi. “These cellulases are abundant but were never reported in an animal before,” McQueen-Mason notes. “We were able to express the genes in a lab fungus and describe the properties.”

They also used X-ray crystallography to discover the structure of the enzyme and show how it binds cellulose chains and breaks them into small sugar molecules.

The GH7 cellulase, an enzyme made by the Gribble, breaks down cellulose into simpler sugars.

The GH7 cellulase, an enzyme made by the Gribble, breaks down cellulose into simpler sugars.

The Gribble’s enzyme appears to be very rugged and long-lasting, which is a good quality for an enzyme that might be used in an industrial setting to make biofuels from wood or straw, McQueen-Mason points out. It works very well in highly saline conditions and may also function well in ionic liquids. The use of salt water and ionic liquids for biofuels processing may cut down on the use of expensive, precious fresh water. And like a true catalyst, the enzyme may be reusable.
You can see a video of the Gribble  – which I highly recommend – it’s kind of cute.

For more on the enzyme, check out the journal paper: ‘Structural characterization of the first marine animal Family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance’ www.pnas.org/cgi/doi/10.1073/pnas.1301502110.

Our Favorite Toxic Chemical: Nitrate

Today’s post is from guest blogger Melissae Fellet, a science writer based in Santa Cruz, California, and was written for the “Our Favorite Toxic Chemicals” blog carnival hosted by Sciencegeist.

Feeding my vegetable garden so it will feed me

I’m eager to grow some of my own food this summer, so I planted a vegetable garden in pots on my porch. Since my previous gardening experience consists of ignoring my plants, learning some gardening tips was a must.

I hope my plants look this healthy in a few weeks! (Image by flickr user despi88)

Like humans, plants need food, too. Those nutrients come from boosts of nitrogen, phosphorus and potassium-containing fertilizer. But plants need help getting their roots on some nutritious nitrogen when that fertilizer contains kelp, alfalfa, crushed bones, chicken poop and ground feathers, like the organic stuff I put in my garden.

Some of those ingredients contain nitrogen as ammonia, which plants can absorb directly. Proteins are another source of nitrogen. Bacteria in the soil separate proteins into amino acids. Other microbes chomp the nitrogen off the amino acids as ammonia. And super-specialized bacteria eat ammonia and release the nitrogen as nitrate (NO3-). Nitrate is great plant food, too, because it zips through the soil straight to a plant’s roots.

This biological nitrogen transformation is slow, so farmers may feed their plants a nitrate-containing fertilizer to speed growth. That’s a touchy subject in the agricultural areas near my home in California.

About 10 percent of 2500 public water wells tested in the Tulare Valley and Salinas Valley exceed the state limits of 45 mg nitrate per liter of water, according to a report prepared for the state water department last March. The majority of the nitrate in groundwater — about 96% — washes off cropland, the report found.

Nitrate takes time to trickle from a field into the groundwater, so most of that contamination is due to decades of past farming in the area. But if the nutrient pollution trend continues, 80% of the people living in those valleys could be drinking nitrate-laden water by 2050.

Nitrate becomes harmful when our bodies convert it to its chemical cousin, nitrite (NO2-). Nitrite transforms the iron in our blood so that it can no longer carry oxygen. Enough altered iron — 10 percent of the hemoglobin in your blood — causes breathing troubles especially in infants and pregnant women. Higher concentrations can lead to suffocation.

Still, it takes a lot of nitrate to harm a person. According to data from the World Health Organization [PDF], an average three-month old baby boy might have to drink about four liters of water contaminated with nitrate at twice the state limit to induce toxicity. An adult might drink up to 56 liters of the same water at once to get a fatal dose of nitrate.

Excess nitrate can be toxic to the environment, too. The nutrient washes into a Central Coast wetland, feeding microscopic algae until they grow into thick green mats that suffocate ponds and channels.

The UC Davis report says that fertilizer fees and improved groundwater monitoring can help protect drinking water. And policy changes are in the works for one part of the state. In March, the Central Coast Regional Water Control Board passed regulations to reduce nitrate-containing runoff from fields. These rules took three years to negotiate and they are still tangled in a lawsuit from growers.

Even without regulations, farmers can prevent nitrogen pollution by controlling the amount of fertilizer on the fields and feeding plants only what they can absorb. The state report also suggests using nitrate-laden ground water for irrigation. Plants absorb the nitrate from the water, and clean water returns to the aquifer.

Lacking a home nitrate test kit for my garden, I’ll choose organic fertilizer when it comes time to feed my plants again. That should give my plants a slow drip of nitrogen and hopefully prevent a build up of excess nutrients. I feed my plants nitrogen so they’ll be strong and healthy enough to produce food for me.

Bring on the orange carrots, yellow peppers and purple beans!

Hidden Chemistry at Solar Biggie BrightSource

We don’t have too many rules here in C&EN blogville, but we do try to maintain a chemistry connection.  I was worried that would be at risk if I were to post about BrightSource Energy, a mega solar tech firm that has filed for a $250 million IPO.

BrightSource Energy's solar mirrors. Credit: BrightSource

To generate energy from the sun, BrightSource puts thousands of big mirrors in the desert that track the sun and focus light on a tower with a boiler full of water. The steam generated cranks a turbine to create electricity. It sounds like what a technology firm would think up if someone forgot to invite a chemist or chemical engineer to the concept meeting.  [Note that in contrast, other solar thermal companies use nifty heat-transfer fluids like biphenyl and diphenyl oxide, as described by my colleague Alex Tullo.]

But there are at least two innovative uses of chemistry in the BrightSource system, one is basic CRC handbook stuff and one is rather mysterious. To extend the hours during which the water can be turned into steam, BrightSource is working to store some of the sun’s heat  in a blend of molten nitrate salts (sodium nitrate and potassium nitrate). To save you the Googling, the melting point of sodium nitrate is 308 C and potassium nitrate is 334 C. For some reason this nice detail is in the firm’s S1 filing but I did not see it on the website.

The more mysterious chemistry is alluded to on the company’s website. As you can imagine, the boiler tower has to withstand some unusual conditions. But worry not, because, “The boiler is designed to withstand the rigors of the daily cycling required in a solar power plant over the course of its lifetime, and is treated with a proprietary solar-absorptive coating to ensure that maximum solar energy is absorbed in the steam. [emphasis mine]. Hmmmmm…. I wonder what is in that coating? Tell me what you think.

Gulf Clean-up: Breaking down oil with surfactants

Cleantech Chemistry will save for later the discussion of whether the environmental disaster in the Gulf of Mexico will put more attention on replacing petroleum in the U.S. economy. But in the meantime it is interesting to note the contribution that chemistry is making to clean-up efforts.

Water treatment firm Nalco released a statement confirming that it is supplying quantities of oil dispersants for the Gulf operation, but did not elaborate on how much of it the company was selling. Nevertheless, the announcement prompted Nalco’s stock to rise 18% to $29.25, hitting its highest point since October 2007. In the press release, Nalco thanks its suppliers for stepping up to the plate, which suggests the company is selling its dispersant as fast as it can be manufactured.

Though Nalco has not yet responded to a request for an interview, the company’s website describes its Corexit dispersant technology as designed specifically to protect and clean shorelines affected by oil spills at sea. The product is made with bio-degradable surfactants in a low-toxicity, de-aromatized hydrocarbon solvent system.

If the chemical dispersant works as designed, the solvent system distributes the surfactants into the oil slick. Then the surfactants go to work reducing the surface tension at the oil/water interface. With the oil film’s cohesion lessened, the action of the waves helps to break up the slick into small droplets of oil. The small drops sink from the surface of the sea and are further degraded by the ocean’s native bacteria.

BP CEO Tony Hayward has been reported as claiming the dispersants have had a significant impact keeping the oil from floating to the surface, but there is very little detail available about how successful the chemical treatment has been so far.

In addition to  Nalco, other producers of dispersants include BP, Croda, Dasic International, INEOS Chemical, Shell, Taiho, Total, and U.S. Polychemical, writes Laurence Alexander, chemicals analyst at Jefferies & Company. Alexander has been tracking reports that the operation is requiring around 10,000 gallons of dispersants a day.

Happy World Water Day

It seems rather auspicious that the first day of this blog is also World Water Day (thanks United Nations!).

Anyone who has done much traveling has probably found himself or herself with a new appreciation of being able to drink and wash with abundant clean water right from the tap. But on March 22nd, we are reminded of the 2.5 billion citizens of the world who do not have regular access to clean water and sanitation.

More and more academics are studying the intersection between water use and world trade. In the developed world, many of the products we use everyday represent a vast investment of clean water. I wrote about the consumer’s water footprint back in the fall of 2008.

The opportunities in clean water are like catnip these days for technology start-ups. One theme that I mentioned in this cleantech water piece is the tight coupling between water and energy resources. To get clean water requires energy – especially in places like the Middle East where water has to be desalinated. On the other hand, many schemes for renewable energy (think about growing crops for energy) require boatloads of water. Can we increase our supplies of energy and clean water at the same time or will one always come at the expense of the other?

Keep an eye out this week for announcements about companies that are making commitments to increase the world’s access to clean water. Nalco, a firm I featured in a cover story about water, has announced a partnership with the World Wildlife Fund to develop best practices to protect and conserve water, and will provide financial support to the Global Water Roundtable.