↓ Expand ↓

Category → Venture Capital

Fake Meat as Cleantech Investment

The New York Times today has a fascinating feature about a new crop of businesses developing better-tasting meat substitutes. According to the Times,

Demand for meat alternatives is growing, fueled by trends as varied as increased vegetarianism and concerns over the impact of industrial-scale animal husbandry on the environment. The trend has also attracted a host of unlikely investors, including Biz Stone and Evan Williams of Twitter, Bill Gates and, most recently, Li Ka-shing, the Hong Kong magnate.

It goes on to say that the sustainability boon of veggie-based protein over animal protein has also attracted venture firm Kleiner Perkins Caufield & Byers to the category.

Since I write about cleantech start ups and food, I figure this is an interesting market niche to examine. But my first question reading the story was, would I eat this? That is not very analytical.

The companies featured in the story are Beyond Meat, which makes a veggie protein chicken that apparently is indistinguishable from the real thing in a dish like chicken salad, Gardein, which makes products including – amazingly to me – fake fish, and Hampton Creek, a start up that has developed a versatile and healthy egg substitute made from Canadian yellow peas.

Setting aside my selfish question of whether these products would appeal to me, a non-vegetarian, I’m going to try to set the stage for an analysis of the likely success of these ventures. The companies state they are hoping to attract mainstream eaters. That means they will have to score a win on the three most important qualities for mainstream grocery shoppers: 1) Taste 2) Cost 3) Convenience.

The point of the Times story is that these up and comers are aiming to beat out today’s fake meat brands on taste and texture. Many fake meat products are easier to store and prepare than raw meat, so that’s a plus. That leaves cost – if they can sell the products for just a bit less than the real thing that would make a huge difference and would expand the market for fake meat.

To get the costs down while they scale production, firms like Beyond Meat will first have to appeal to the early adopter/healthy eater/vegan/vegetarian/flexitarian who is willing to try something new.

But while some shoppers may be swayed by sustainability claims, these technology-based firms will have to navigate the growing tide of shoppers of all types who eschew mystery products, high-tech food processing, and food additives such as colors, flavors, preservatives and even texturizers. Shoppers know that even natural flavoring additives may be chemically similar to MSG (particularly flavors derived from yeast). This crowd is likely to be close to a third of shoppers by the time these firms hit the mainstream. Foodies who already shun “highly processed” foods may be wary of high-tech meat substitutes.

What’s more, shoppers who choose fake meat for health reasons only may regress to “sustainably raised” animal products as our nutritional understanding of the effects of various types of fats grows more sophisticated.

But one fact in the article stood out – the current leader in fake meat, MorningStar Farms, has a whopping 60% of the market. This strongly suggests that there is room for a number of new entrants to take a healthy bite of that share. When it comes to food (as opposed to, say, renewable energy) people are very picky, and they like choices.

As for me, I say, bring on the “chicken” wings, the no-egg mayo, the “meat crumbles” chili. I’ll try anything once.

Speaking of picky eaters who are concerned about sustainability, check out this hilarious clip from the IFT show Portlandia:

http://youtu.be/ErRHJlE4PGI

 

Green Business Plan Competition: Start your engines

The ACS Green Chemistry Institute will be hosting a business plan competition on June 18, 2014 at the 18th Annual Green Chemistry and Engineering Conference, which will be held outside of Washington D.C.

The competition is for early stage ideas – but not ideas for renewable energy production or biofuels (there are no shortage of competitions for those). If you have an idea for a green innovation that only chemists would truly understand, this is your chance.

The first deadline to be aware of is April 25 – that’s when to submit your 10-15 slide PowerPoint presentation and optional YouTube video. Just aim to be done by Earth Day and you’ll be right on schedule.

The competition website includes a host of great links to advice on how to communicate and advance your start-up idea. And don’t forget to review (memorize them!) the 12 Principles of Green Chemistry.

Gates Invests In KiOR, Elevance Coming to U.S.

Bill Gates (yes, that Bill Gates), through a fund called Gates Ventures, is investing $15 million in advanced biofuels firm KiOR. Gates is not a huge cleantech investor generally (though he has backed other firms such as the young MIT spin-off Liquid Metal Battery). So it’s rather interesting that he’s decided to invest in KiOR, which is not at all an “early stage” tech firm – in fact, it is a public company.

Vinod Khosla, a tech pioneer who is much more well known as a cleantech investor with deep pockets, has committed to putting in another $85 million to KiOR in debt and stock. Khosla was instrumental in the founding of the company and has been an unusually loyal and generous benefactor.

With this $100 million infusion, KiOR says it will be able to build out its capacity-doubling project at its Columbus, Miss. facility (see Khosla, Kior Double Down).

If we go back in time a bit to the end of the second quarter, we see that KiOR had started shipping its drop-in fuels (gasoline, diesel, heating oil) made from wood. But the amount of production was behind schedule, and its cash position was delicate, to say the least. At the time, analysts suggested that the firm should bring in a corporate partner such as a refining company. But that’s not what happened.

It is clearly good news for KiOR that it has a few friends who are willing to keep dipping in to their own pockets to make sure its first facility can reach the point where it generates enough cash to fund operations – and presumably prove out that KiOR’s next commercial facility (planned for Natchez, Miss.) will be profitable.

And its only fair to note that the same analysts who suggested KiOR get an additional large investor are also very bullish on the company. So what is there to like about KiOR?

  • KiOR has significantly increased uptime at the Columbus facility
  • It has produced and shipped actual product
  • Yields are rising
  • Drop-in biofuel is considered a much more desirable product than ethanol
  • KiOR’s technology can accommodate cheap feedstocks (the expansion will use waste railroad ties)

The main negative, in fact, was the near-term need for additional capital. And even back in August – before both recent investment announcements – analysts at Credit Suisse and Raymond James had an outperform rating on KiOR’s stock.

Does all of this mean that KiOR is a guaranteed win? No, of course not. But I find it interesting how far KiOR is poised to go with the help of a few true believers.

Elevance comes to the U.S.

Elevance is another cleantech firm that is expanding its commercial operations. The company makes specialty chemical intermediates – functionalized esters and the like – for use in downstream products for personal care, coatings, lubricants and additives. Its feedstock is vegetable oil, which it processes using olefin metathesis.

The company did not have an IPO, as KiOR did, but chose instead to raise private capital. Its first plant, in Gresik, Indonesia is a large one, at 180,000 metric tons per year. Elevance says that its output there is all spoken for, and it is now proceeding with plans to build a second plant, also in Natchez, Miss. That facility is expected to come online in 2016.

 

 

 

 

 

Khosla, KiOR Double Down in Mississippi

When the second quarter ended, drop-in cellulosic biofuels maker KiOR was in the process of ramping up production at its first large-scale (eventually 13 million gal per year) plant in Columbus, Miss. The company told investors that it hoped to double the capacity at the Columbus location, at an estimated cost of $225 million.

The company had cash reserves of just under $12 million. But, it had one asset that is incredibly valuable – the backing of venture capitalist Vinod Khosla. Khosla has agreed to fork over $50 million – half of it likely to come from his own personal funds – to seed an investment strategy that may bring in other deep pocketed parties such as an industrial partner or traditional lender.

KiOR makes gasoline and diesel (not ethanol) from cellulosic feedstocks (wood) via fermentation. Khosla was there at the company’s beginning – he helped midwife it into a startup in 2007 and invested in it before – and now after – its IPO in June 2011. The company went public at $15 a share in its pre-production, pre-revenue era (it is now trading around $2.50).

With the Columbus plant, KiOR is in the very first crop of producers of cellulosic biofuels. Investors love that the company’s output is not subject to blend walls the way ethanol production is. But getting steady-state, high levels of output from a first-of-its-kind facility is pretty much unheard of in the second-gen biofuels industry.

And so KiOR is hoping it will produce 1 million gal this year, as it does the start-stop-fix-start thing. That’s why it is interesting that rather than hold out to generate revenue from Columbus I, KiOR plans to use what has been learned already to literally double down on its bet. Interestingly, part of the motivation to build the Columbus II plant is the availability of cheap railroad ties at that location.

In the press release Khosla (who owns a majority stake) stands by his company:

“While KiOR has faced normal start-up issues at the Columbus I facility, I believe that the Columbus I facility has proven that KiOR’s technology can meet and over time exceed the technology performance metrics of approximately 80 gallons per bone dry ton I expected for 2015, driving toward the ultimate goal of producing 92 gallons of hydrocarbon fuels (or over 150 gallons of ethanol equivalent) per bone dry ton of biomass, particularly given the Company’s continued progress in research and development. I believe that KiOR’s proprietary technology platform is substantially better, and can produce hydrocarbon fuels at lower cost, than any other currently visible biofuels fermentation technology, cellulosic or otherwise, that I am aware of.  I expect that cash costs per gallon (excluding depreciation) on an energy content basis at the two Columbus facilities should be lower than today’s corn based ethanol. I also believe that KiOR’s cellulosic fuels, which have a higher per gallon energy content than ethanol and can integrate seamlessly into the existing hydrocarbon fuels infrastructure, will provide a biofuel alternative without blendwall issues that is more attractive than ethanol, considering both production costs and logistical efficiencies.”

That’s rather a lot of very specific declarations by the normally Zen-like master of Cleantech VC. But others also sound pretty darned enthused about the company. Stock analysts Pavel Molchanov at Raymond James and Edward Westlake of Credit Suisse both rate the stock as outperform though they acknowledge that investors are jittery.

Once Columbus I and then Columbus II are up and running, both analysts seem very comfortable with the company’s production cost structure. In the meanwhile, Molchanov says investors’ worries should be quieted by Khosla’s confidence.

“By pledging an additional $50 million – an anchor as KiOR finalizes its long-term financing package – Khosla guaranteed KiOR’s financial security for at least six more months, which should set jittery investors’ minds at ease. Khosla’s status as one of the nation’s wealthiest VC investors means that his (yet again reaffirmed) backing for KiOR is analogous to Elon Musk’s support for Tesla and SolarCity, which in the past, went through their own periods of facing a skeptical market.”

You can read more about Khosla’s long-term investing strategy in biofuels on the Wall Street Journal’s Venture Capital Dispatch blog. In addition, Jim Lane at Biofuels Digest writes about how difficult it is for outsiders – and even insiders – to understand the true status of a ramp-up like KiOR’s.

 

 

There’s Still Hope for Energy & Materials Start-ups

Funding for cleantech and related start-ups can be feast or famine. Government, venture capital, and corporate backing ebbs and flows. One constant, though, is that technology entrepreneurs should never miss a chance to get in front of investors.

On February 25, start up executives will pitch to investors at the ARPA-E Energy Innovation Summit in Washington, DC. An event run by Future Energy will provide the space, a slide template, and a panel of experts for Q&A. In the audience will be people from corporations and other kinds of investors who will be attending the ARPA-E gathering to hear from the likes of Michael Bloomberg and the folks who dispense money from DOE.

Future Energy is a part of a larger organization called Ultralight Startups. Shell, through its program Shell Game Changer, is the main sponsor. Future Energy founder Graham Lawlor tells Cleantech Chemistry that unlike internet startups which are legion and fill to overflowing many investor pitch events, his events are specific to energy and cleantech and he has to go out and find tech start-ups for the slots. But he’s not worried, because the scientists and engineers are out there with good ideas.

In 2012, Future Energy held two events in Boston and two in New York. This year they’ll head also to Silicon Valley. At the ARPA-E event in DC, two of the companies pitching won their slots through an online voting mechanism. You can go to their website to apply for future events through the first half of the year (tell your friends!). You can see a video of United Catalyst at an event last year pitching technology for inorganic catalysts designed for cellulosic ethanol production. The pitches are only 3 minutes long, so its good to pare down your story to bare essentials.

Also investing seed money in energy start-ups is Lux Capital, which today announced commitments totally $245 million for its third venture fund. The fund is fairly broad- the firm is looking for unusual opportunities in energy, healthcare and technology.

The ever-enthusiastic Josh Wolfe, Lux Capital co-founder and managing partner, describes his strategy this way:

“At Lux, we are sticking to our knitting to build a concentrated portfolio of extraordinary companies in unconventional areas,” says Wolfe. “Many of the themes and entrepreneurs we’re excited about—in 3D printing, metamaterials, robotics and breakthroughs in solid-state electronics—are non-obvious, and that’s by design. We believe the combination of brilliant entrepreneurs and deep scientific innovation drives immense industry shifts and profits. Both at Lux and our companies, we’re growing rapidly and calling for the boldest and brightest that want to invent and invest in the future.”

 

Thin film solar maker Miasolé bought by China’s Hanergy

Hanergy, a China-based renewable energy company, announced today that it has completed its acquisition of thin-film solar firm Miasolé. The buyer first reached a purchase agreement with Miasolé’s investors in September.

Of the many photovoltaic manufacturers out there – and/or recently bankrupt – Miasolé is one of the most elegant. And not just because of its attractive-sounding name (news reports online have stripped it of the accent aigu — it’s pronounced MiasolA).

Miasolé makes thin film solar cells of the copper indium gallium selenide variety. This is an attractive technology because it is possible to make CIGS as efficient as heavier traditional polysilicon solar PV. The first thin-film technology was based on amorphous silicon (a technology that Hanergy plans to abandon), which was much less efficient than traditional solar cells. In theory, CIGS can be manufactured in long, flat, flexible sheets and installed in places that cannot support other kinds of solar panels.

For now, CIGS material on the market has an upper-bound efficiency of about 12% or so, while traditional solar starts there and goes up a bit. CIGS are more expensive, and are much more difficult to manufacture.

For Miasolé’s part, in May the company reported that NREL confirmed a 15.5% efficiency on its newest commercial, flexible CIGS cells. It is not clear what the efficiency of a fully installed system would be. But it shows that this firm has been pushing the technology. Back in 2011, it worked with semiconductor maker Intel to help it ramp up its manufacturing. At the time, the company said it was using a low-cost sputtering technology for materials deposition.

News reports have estimated that Hanergy spent about $120 million to buy Miasolé’, a company that was valued as high as $1.2 billion in 2008. Hanergy makes most of its money by generating power from hydroelectric installations. Last year it also snapped up Solibro, a unit of Germany’s solar manufacturer Q-Cells.

Hanergy says it will keep the Miasolé CIGS manufacturing operations going in California. Meanwhile, another CIGS start-up, SoloPower, recently began production in Portland, Oregon.

LanzaTech: Now experimenting with CO2

It’s not too often that I get a press release with a New Zealand embargo time. Waste gas to fuels and chemicals firm LanzaTech got its start in New Zealand, but is currently headquartered in Illinois. Still, the company’s larger projects are all in Asia, and being on the opposite side of the world from Cleantech Chemistry blog HQ is not a problem for them.

Yesterday (which is today in New Zealand), LanzaTech CEO Jennifer Holmgren spoke to a conference of oil refiners in New Delhi. In her remarks, she announced that the firm has a new joint development agreement with Malaysia’s national oil company Petronas.

The two firms will work to produce chemicals from carbon dioxide – the first one being acetic acid. LanzaTech already has two facilities that make ethanol from CO. In all cases, the CO or CO2 comes from waste gases. LanzaTech’s proprietary microbes ferment the gas into various end products. The Petronas deal will get its CO2 from refinery off gases and natural gas wells.

Earlier this year, the venture arm of Petronas contributed to LanzaTech’s third round of venture funding. And it seems the two companies have been in cahoots ever since.

C&EN profiled LanzaTech this summer.

And there is another cleantech firm that aims to make acetic acid – Zeachem. Zeachem is building out its plant that will produce acetic acid – as well as ethanol – from hybrid poplar grown in Oregon.

SoloPower, Gevo: Can a capital-light strategy save cleantech?

I wish I could be in Portland, Oregon today to watch SoloPower start up its first production line of thin film CIGS solar panels. The company says it can manufacture in a continuous process to make its solar material in strips as long as one mile.

The company asserts that its thin, flexible modules are a good fit for building-integrated solar, especially in locations where heavier, traditional glass panels cannot be installed such as on warehouse roofs. The modules are certified to an efficiency rate of 9.7 to 12.7%.

But it’s not so much the technology itself that is interesting, but rather SoloPower’s business model and whether it can succeed in selling what it admits is a premium-priced product while the traditional silicon modules continue to drop in price, taking down many efficient producers with them.

SoloPower is already having to bear up under scrutiny because it will be able to tap into almost $200 million in DOE loan guarantees, under the same program that was behind the Solyndra kerfuffle. NPR did a nice job this morning interrogating SoloPower CEO Tim Harris. Read or listen to the short piece here.

NPR rightly points out that Solyndra was backed by $1 billion in private funding and accessed half a billion dollars in its own DOE loan before going bankrupt. But SoloPower doesn’t have a billion bucks to lose, and perhaps that is a good thing.

Instead of comparing SoloPower to Solyndra I’d like to compare it to Gevo, a maker of biobased isobutyl alcohol (what it calls isobutanol). Both firms are pursuing a capital-light strategy.

SoloPower’s first production line will have a small eventual annual capacity of 100 MW. So far, it has spent only its own investors’ dollars. Gevo, a now public company, is spending somewhere around 25% to one-third the cost of a new fermentation plant by converting existing corn ethanol plants.

When a company that has a technology without a track record wants to build its first large plant, it faces financing risk on top of technology risk. Range Fuels built a shiny new plant in Georgia to make ethanol from wood chips. But since the technology did not work upon start-up, Range could not pay its monthly loan overhead, and the factory was repossessed by its financing bank and sold at auction (Range also had a DOE loan guarantee).

Early this week, Gevo told investors that it had stopped making isobutyl alcohol at its facility in Luverne, Minnesota. Instead, it turned the switch back to ethanol. Gevo’s plan to convert an ethanol plant in Redmond, South Dakota is on hold. The company said though it successfully made isobutyl alcohol in Luverne, to reach its target run rate would require more work. Meanwhile, both locations can still produce ethanol.

Though Gevo’s investors weren’t happy with this news, Gevo has given itself plenty of time to fix its problems, saying it would reach its target run rate in 2013 (it could take a year and still make this deadline).

Reducing a company’s financing risk doesn’t do much to reduce its technology risk – or in SoloPower’s case, its market risk – in either the short or long term. But it may help a company last beyond just the short term. Given the pitfalls of technology scale-up, that could make all the difference.

Battery Start-up Gets New Name

Liquid Metal Battery Corporation now has a new name – Ambri. I have to admit, since I track a number of cleantech start-ups, I had a fondness for LMBC partly because the name was so descriptive of the technology. It helps when my memory gets a little faulty.

The researcher and founder of Ambri, Donald Sadoway, is profiled in C&EN’s very recent cover package about Entrepreneurs in Chemistry. I enjoyed Sadoway’s story very much. As C&EN’s Amanda Yarnell points out in the story, though he is an expert in materials, Sadoway and his team are not experts in the battery industry. Their outside perspective helped the team come up with a cheaper method to store intermittent, renewable energy.

But I will miss the old name. The press release says Ambri comes from a snippet of Cambridge, home of MIT. Maybe Liquid Metal Battery Corp was considered too long, or perhaps too, er, sloshy?

The Money in Dirt

Cleantech firms are sometimes criticized for pie in the sky thinking. Harvest Power, though, looks like a pretty down to earth company. It makes dirt*. Mind you, this is high quality dirt*.

Compost. Black Gold? Credit: Harvest Power

Late last week, Harvest Power said it had raised $110 million in a third round of venture capital funding. That’s a tidy sum for a messy business. Harvest is an industry that some call “organics management.” According to the firm’s website, it works at a community level to gather and re-use organic materials (food waste, lawn clippings, pieces of lumber). It produces mulches, organic fertilizer, and soil products using composting and anareobic digestion.

These technologies are not exactly new. But it seems that the value is in its system approach and its facilities. Harvest ties into local communities where organic materials are separated from the waste stream. In addition to recyling the waste into soil-related products – which it sells to local farmers and gardeners - its digestors produce renewable energy from biogas.

The biogas is used in combined heat and power plants, exported as pipeline-grade (i.e. purified methane) natural gas, or compressed gas to be used for transportation. High heat content materials like wood chips are also processed into fuel for use in industrial boilers.

According to PrivCo, a firm that tracks the finances of privately-held companies, Harvest can boast significant revenues (this contrasts the firm with some cleantech plays that go public before making any money from sales). Founded in 2008, it made close to $50 million last year and is expected to rake in $75-$100 million in 2012.

The financing will be used by the company to expand its reach. PrivCo reports Harvest is finishing two Canadian energy plants and has plans for waste to energy facilities in New Jersey and Florida.

* [update] Harvest actually produces soil, as The Phytophactor points out in his comment.