↓ Expand ↓

Category → Miscellaneous

Fake Meat as Cleantech Investment

The New York Times today has a fascinating feature about a new crop of businesses developing better-tasting meat substitutes. According to the Times,

Demand for meat alternatives is growing, fueled by trends as varied as increased vegetarianism and concerns over the impact of industrial-scale animal husbandry on the environment. The trend has also attracted a host of unlikely investors, including Biz Stone and Evan Williams of Twitter, Bill Gates and, most recently, Li Ka-shing, the Hong Kong magnate.

It goes on to say that the sustainability boon of veggie-based protein over animal protein has also attracted venture firm Kleiner Perkins Caufield & Byers to the category.

Since I write about cleantech start ups and food, I figure this is an interesting market niche to examine. But my first question reading the story was, would I eat this? That is not very analytical.

The companies featured in the story are Beyond Meat, which makes a veggie protein chicken that apparently is indistinguishable from the real thing in a dish like chicken salad, Gardein, which makes products including – amazingly to me – fake fish, and Hampton Creek, a start up that has developed a versatile and healthy egg substitute made from Canadian yellow peas.

Setting aside my selfish question of whether these products would appeal to me, a non-vegetarian, I’m going to try to set the stage for an analysis of the likely success of these ventures. The companies state they are hoping to attract mainstream eaters. That means they will have to score a win on the three most important qualities for mainstream grocery shoppers: 1) Taste 2) Cost 3) Convenience.

The point of the Times story is that these up and comers are aiming to beat out today’s fake meat brands on taste and texture. Many fake meat products are easier to store and prepare than raw meat, so that’s a plus. That leaves cost – if they can sell the products for just a bit less than the real thing that would make a huge difference and would expand the market for fake meat.

To get the costs down while they scale production, firms like Beyond Meat will first have to appeal to the early adopter/healthy eater/vegan/vegetarian/flexitarian who is willing to try something new.

But while some shoppers may be swayed by sustainability claims, these technology-based firms will have to navigate the growing tide of shoppers of all types who eschew mystery products, high-tech food processing, and food additives such as colors, flavors, preservatives and even texturizers. Shoppers know that even natural flavoring additives may be chemically similar to MSG (particularly flavors derived from yeast). This crowd is likely to be close to a third of shoppers by the time these firms hit the mainstream. Foodies who already shun “highly processed” foods may be wary of high-tech meat substitutes.

What’s more, shoppers who choose fake meat for health reasons only may regress to “sustainably raised” animal products as our nutritional understanding of the effects of various types of fats grows more sophisticated.

But one fact in the article stood out – the current leader in fake meat, MorningStar Farms, has a whopping 60% of the market. This strongly suggests that there is room for a number of new entrants to take a healthy bite of that share. When it comes to food (as opposed to, say, renewable energy) people are very picky, and they like choices.

As for me, I say, bring on the “chicken” wings, the no-egg mayo, the “meat crumbles” chili. I’ll try anything once.

Speaking of picky eaters who are concerned about sustainability, check out this hilarious clip from the IFT show Portlandia:



Selling it: Making chemicals from CO2

Cleantech start-up Liquid Light is hitting the road to market its catalytic technology that takes in CO2 to make chemicals. C&EN science reporter Mitch Jacoby included the company in his July 1 feature about methods to use electrochemistry to convert CO2 to valuable products.

Earlier this week, the company announced that it now has a lab scale prototype and is targeting production of ethylene glycol (MEG – with the M for “mono”). MEG is commonly known to consumers as antifreeze, but the bulk of it is used as an intermediate chemical in the production of polyester and PET resins. Shell Chemicals is a leader in MEG production with its own OMEGA catalytic process.

Liquid Light

The prototype electrochemical cell is coffee-table sized. Credit: Liquid Light

C&EN spoke with Liquid Light’s CEO Kyle Teamey while he was at the airport. Teamey is calling on potential licensees who may be interested in investing in the firm’s next step: a larger, real-world installation to further demonstrate the technology. The firm currently has backing from VantagePoint Capital Partners, BP Ventures, Chrysalix Energy Venture Capital, and Osage University Partners.

The following is a lightly edited Q&A.

CC: What sources and types of CO2 streams are you targeting?

KT: The idea is to use industrial point sources of CO2, ideally one that is located in an existing chemical production area, petrochemical plant, or refinery site. In terms of cost structure, we assume the cost that is associated with using conventional carbon capture technology. Estimates from those technology providers have led us to assume $80 per ton, though it can range wildly between $5-150. We want pipeline grade CO2, relatively pure but not completely squeaky clean.

Still, we have a stable catalyst for making a lot of different chemicals, there are chemicals that can be made with very impure CO2, that includes SOx, NOx, oxygen, CO, and mercury. We’re not going to hook the thing up to a coal fire power plant, but there are opportunities out there.

CC: What would be the source of hydrogen?

KT: Customers would be able to use the lowest cost hydrogen available on market, like from dereforming of methane, or unconventional ones like water electrolysis. Ultimately we want to provide technology for customers to reach whatever goals they have – they could even set up at a remote site to use CO2.

CC: How did you come to lead this effort at Liquid Light?

KT: I was an entrepreneur in residence with a venture capital fund – I came in with the intent on starting this company. I’m more like a utility infielder than a pinch hitter.

CC: Who are you speaking with now to advance the technology, and what kind of reception are you getting as a tech start-up?

KT:There is still a lot of interest from the petrochemical industry in new carbon feedstocks. Particularly something, in the case of CO2, that is low cost. With a captive industrial point source, there is no price volatility of that input.

You can configure the process in such a way that you significantly reduce the carbon footprint of manufacturer, to help hit economic and environmental goals simultaneously. Most manufacturers look at this from an economic standpoint.We have a lot of people excited about the MEG process, other groups are interested in other chemicals aside from MEG. That’s why I’m at the airport this morning.

CC: How big is your lab prototype and what scale are you ultimately targeting?

KT: It’s coffee-table sized. The prototype weighs a lot. Ultimately we would go to world-scale size for the product we are making. With the electrochemical technology, you scale up by stacking. You can make smaller amounts of specialty chemicals or build out for larger market chemicals like MEG.

CC: What is it like to be involved at a start-up at this point in the process?

KT: The opportunity to bring a new chemical feedstock online is lots of fun – there is a lot of excitement. It is still a relatively early-stage company, but from a job perspective, I’ve found nothing is more satisfying than taking something from a concept to a reality. It has been really exciting to watch these things move into beaker scale a few years ago and then to lab scale. And now I can’t wait to get to the next scale.

Stop Saying Indonesia is the Third-largest GHG Emitter

Secretary of State John Kerry’s speech in Indonesia early this week warning about failure to act against climate change attracted a lot of media attention.

Several news outlets, while covering Kerry’s remarks, stated that Indonesia is the third largest emitter of greenhouse gases after the U.S. and China. Both the New York Times and NPR’s News Hour reported this startling claim. It was not part of the Secretary’s statement.

And that’s a good thing, because it appears to be quite wrong. According to data released in October 2013 from the United Nations Framework Convention of Climate Change, Indonesia’s contribution of greenhouse gas is more comparable to that of Italy than to the U.S. or China.

Even when including land-use changes, a stringent measure that significantly increases Indonesia’s output, the archipelago emits fewer tons of GHG than the U.S., China, Russia, Brazil, India, Japan, Germany, Canada, UK, Mexico, and Australia.

So where does the “third-largest” factoid come from, then? From what I can tell, this was an estimate made by the UN back in 2005, shortly after the country ratified the Kyoto protocol. It is not clear how accurate that figure ever was. It’s true that Indonesia is still ranked fairly high considering that it is not a developed country, but in its defense, it is the fourth most populous nation on earth.

Another contributing factor to this claim is likely the many reports about deforestation and other actions in the country to convert land to agricultural uses, such as for palm oil plantations. These land use changes do make a huge contribution to emissions. Concerns about land conversion have driven demand for certified sustainable palm oil.

Still, if we’re going to call out specific countries for their overly-large contributions to climate change, let’s at least get our facts straight.

Rivertop Makes Montana a Magnet

This dispatch from the American Cleaning Institute show is a guest post by Mike McCoy. Thanks Mike!

John Monks is moving to Montana.
That’s one of several changes precipitated by an impending round of funding for Rivertop Renewables, a biobased chemicals company headquartered in Missoula, Mont.

Monks has been Rivertop’s vice president of business development since May 2013. He came to the startup following stints at two larger industrial biotech firms, Genencor and DSM.

Monks and his wife now live in the Chicago area, but the pending infusion of venture capital will put Rivertop on solid financial footing, he says, and prepare it for life as a going commercial operation. Monks needs to be in Missoula to help make it happen.

Rivertop produces chemicals from biomass. What separates it from the firms Monks used to work for is that the conversion is carried out not by fermentation but via a chemical synthesis, in this case a carbohydrate oxidation developed by Donald E. Kiely, a University of Montana emeritus chemistry professor.

Glucaric acid made from glucose is Rivertop’s first product. Monks was at the American Cleaning Institute’s annual meeting in Orlando, Fla., last week to promote the chemical as a raw material for the detergents industry.

Rivertop says glucaric acid is a chelating agent that works almost as well as sodium tripolyphosphate did in laundry detergents and automatic dishwasher detergents. Phosphates were legislated out of U.S. laundry detergents decades ago and out of dishwasher detergents in 2010.

Detergent makers have come up with phosphate replacements, but they tend to be expensive or otherwise flawed. Monks says manufacturers are receptive to the idea of an efficacious and cost-effective alternative.

At present, Rivertop’s glucaric acid is being toll-produced by DTI, a contract manufacturer in Danville, Va., that can turn out about 8 million lb of the chemical per year. Although Monks won’t disclose more about the financing until it is completely nailed down in the next month or two, he does say the additional cash will allow output to increase further. Moreover, it should set Rivertop on a path to build its own commercial-scale glucaric acid facility, likely in cooperation with a partner.

Another thing the cash will do is allow Rivertop to double its workforce in Missoula from the present staff of 18. Monks is looking forward to his move to Montana, but he acknowledges that the location might not appeal to everyone. “Flying in and out of Missoula isn’t the easiest thing to do,” he says.

Cool Planet Wraps Up $60 Million Funding Round

Biomass to fuels firm Cool Planet has raised $60 million from venture backers in its fourth round of funding. Until now, two things had made Cool Planet unique in the biomass space – it attracted investment from Google Ventures, and its business model calls for small-scale, modular biorefineries.

Since venture backing for cellulosic fuels start-ups has been negligible lately, Cool Planet’s $60 million fund raise gives it a third unusual quality.

In some ways, Cool Planet is a bit like Khosla-backed KiOR – it relies on specialty catalysts to transform biomass (i.e. wood chips, agriculture waste) into drop-in, gasoline-like biofuels rather than ethanol like in most cellulosic fuel plants.

But Cool Planet sequesters the untransformed bits of biomass into what it calls biochar, which can be used as a soil enhancement in agriculture. Cool Planet did not invent the idea of biochar (which is sort of like charcoal), nor did it invent the idea of using it to boost soil productivity (through water and nutrient retention). But the carbon sequestration that biochar represents allows the company to advertise its fuel as carbon negative.

It’s not yet clear if farmers would adopt Cool Planet’s output, however. In fact, the company’s website says it is actively seeking partnerships to get this particular ball rolling. From the outside it is not clear to what degree profitability hinges on the sale of biochar.

Having a modular biorefinery sounds like an attractive concept, considering the module could be placed where biomass exists in significant quantities but would not be profitable to ship to a distant, huge biorefinery. Still, these facilities are not tiny; each “station” would produce 10 million gal per year of biofuel. And Cleantech Chemistry has not yet determined how the company plans to get the fuel output from these distributed outposts transported to a point of sale.

Cool Planet’s fund raising will be used in part to finalize engineering design for its first commercial facility as well as capital for construction in the Port of Alexandria, La. The company says it will be in operation before the end of 2014.

In addition to Google, Cool Planet has backing from North Bridge Venture Partners, Shea Ventures, BP, Energy Technology Ventures, and Excelon.

Harnessing Entropy

In Solar, a novel by acclaimed author Ian McEwan, the protagonist, a physicist named Michael Beard, has been tasked to evaluate submissions from the public sent to a UK panel looking for new ideas for clean energy. He divides them into piles: those that violate the first law of thermodynamics, those that violate the second law, and those that violate both. This cleantech reporter could relate.

That’s why ideas that start with the laws of thermodynamics – rather than those that have to account for them later – are so attractive. Take entropy, for example. In our daily life we struggle against entropy – the iPod headphone wires that get totally knotted up in my handbag, the fact that the neatest person you know still has a junk drawer, and so on.

This week’s issue of C&EN explores research that tries to harness the universe’s arrow-like movement to disorder. When CO2 laden emissions from power plants are released into the atmosphere, the CO2 mixes into the ambient air mass. As Naomi Lubick explains, an electrochemical cell could harvest the energy that is released when these two gases mix. Researcher Bert Hamelers of the Dutch water treatment tech center Wetsus, has developed a lab scale device to do just that.

But Lubick points out that to implement such a solution would require overcoming at least two hurdles – one, the sulfur dioxide and nitrogen oxides may foul the system’s membranes. And two, it is no easy task to dissolve huge amounts of CO2 in liquid.

Dissolving gas in liquid requires toil and trouble. Credit: Wikimedia Commons

Dissolving gas in liquid requires toil and trouble. Credit: Wikimedia Commons

In fact, dissolving the gas uses quite a bit of energy. Which reminds me of another literary reference: the witches of Shakespeare’s MacBeth chant “Double, double, toil and trouble; Fire burn and cauldron bubble” – indeed, there is some toil and trouble involved.

I know that many other researchers and technology companies are working on these two problems. For example, there are programs working on carbon capture and storage that are using liquids, catalysts and membranes to grab components of power plant emission gases. And firms such as Calysta Energy and Lanzatech have plans to use microbes to make useful products out of gases such as methane and flue gas. For that, they need to dissolve the gas in water. It is not a trivial problem.


No Magic In China’s Solar Industry

Sunday I picked up an actual print copy of the Washington Post. In the Business section was a feature by Steven Mufson on the rise and fall of Chinese solar firm Suntech – which was at one time the world’s largest producer of crystalline silicon solar panels. In mid March the firm defaulted on $541 million worth of convertible bonds.

(The story of Suntech’s founder and now-former CEO, Shi Zhengrong, is also captured in the feature. A true rags to riches tale.)

In the waning months of 2012, pundits were forcasting major financial problems for some of China’s humongous solar companies – but many expected that the government would prop them up with loans to keep them afloat. There were many reasons why it might have: China wants to hold on to its dominance in making solar modules for export, it has huge targets for domestic installations, it has a policy of subsidizing industrial expansion, and it can provide both cheap electricity and cheap financing.

Mufson explains how Suntech was caught up in a very expensive race to the bottom in solar module production – overcapacity (in expensive facilities) and rapidly shrinking margins, fueled unhelpfully by China’s green economy plans. The U.S. added to the woe by slapping a tariff on solar modules imported from China (oversupply set the stage for what trade officials like to call dumping).

Mufson writes:

Until now, policymakers in China have used subsidies to create a world-leading “green tech” industry that would push the country up the economic value chain. But green tech doesn’t guarantee thriving businesses. In the race for global solar supremacy, world manufacturing capacity has grown to 60 gigawatts, most of it in China. That outpaced solar demand, which is expected to reach about 35 gigawatts this year, enough to power about 26 million homes. So prices of photovoltaic panels have plummeted, and it will take three to five years for overcapacity to shrink, says Bill Wiseman, managing partner of consulting firm McKinsey’s Taipei office.

China has other very large solar producers in addition to Suntech and LDK. They also have Trina Solar and Yingli. Four huge vertically integrated module makers was at least two too many. Analysts will be watching margins and debt very carefully now that it is clear that China’s future financial support for solar companies is not guaranteed.

Science-y Advice for (potential) Entrepreneurs: Add this to your library

In addition to C&EN, Cleantech Chemistry’s household also receives Physics Today, the monthly magazine of the American Institute of Physics. The December issue contains an article – available free online – that is a must-read for any potential or current entrepreneur in the sciences.

The authors* interviewed 129 out of 192 founders and 16 other company officers at 91 startups in entrepreneurial clusters in 13 states. They examine where the firms’ technology came from and where their funding came from (and in what order). The interviews unearthed fascinating observations about working with venture capital and angel investors and how they differ regionally. The article also covers the different types of technology transfer programs at Universities and what it is like to work with them. It also discusses regional start-up cultures across the U.S.

As in this year’s C&EN special issue on chemistry entrepreneurs, the focus is on lessons learned. The Physics Today story includes a box titled “How to create an unsuccessful startup.”

In case you think that the situation of physics R&D and start-up culture is different than in chemistry – read this excerpt and see if it sounds familiar:

Because the large high-tech companies that once supported significant research have switched to development, the role of small startups as creators of innovative physics-based technology has become more important. Lita Nelsen, director of MIT’s Technology Licensing Office, describing the general decline of the once-great industrial labs, noted that “we’re dependent on the universities to be pushing the frontier of knowledge because the research labs in industry are largely shut down.” She added that more than half of the MIT patents for really innovative, early-stage technology are being licensed to startups. According to Nelsen, once a startup has proven an innovative technology, “the large companies will then buy either the product line or the company, and that is a conscious strategy for acquiring new technology now because it reduces their risk.” For a proven technology, large companies sometimes pay 100 or even 1000 times what they would have paid had they licensed the same technology from a university at an early stage.

The article goes on to discuss the difference between what it calls “technology push” versus “market pull” companies and why the former is the more risky. Go check it out!

*Orv Butler is a historian at the American Institute of Physics Center for History of Physics in College Park, Maryland. Joe Anderson is the associate director of the AIP history center and director of the AIP Niels Bohr Library and Archives in College Park.

The DOI for the Physics Today article

Risky business: A study of physics entrepreneurship

is: http://dx.doi.org/10.1063/PT.3.1821


Testing Green Fracking Fluids

Natural gas company Cheasapeake Energy is testing new formulations of fluids for hydraulic fracturing that contain environmentally-benign ingredients, according to Bloomberg. This news caught my eye as I’ve been researching this and related shale gas development topics for many weeks.

In hydraulic fracturing – or fracking – millions of gallons of water, mixed with proppants, usually grains of sand, and small amount of chemicals, are injected deep into a gas well. Forcing this mixture into the horizontal portions of a well and into the shale formation fractures the rock and allows the gas to flow to the surface.

For the most part, the fluid’s job is to imbed the grains of sand into the fractures. The added chemicals do other things – for one thing, they prevent scale from forming in the fractures. In addition, well operators also use biocides to limit the amount of bacteria, which can clog up the works. Acid-producing bacteria can even damage the well casing. Another important element is friction reducers, to help the liquid and proppants reach farther into the shale. These are normally simple polymers.

There has been much public concern about possible environmental or health impacts from fracking chemicals. Now, many providers of chemicals that are used in fracking are swapping earlier formulations for ones made up of food-safe or GRAS compounds.

If you have any questions or comments about hydraulic fracturing or fracking chemicals feel free to put them in the comments – I’ll do my best to find answers or point you to helpful resources. One website that gives details about fracking chemicals is http://fracfocus.org/

A Graphic Illustration of the Target on the Back of the Chemical Industry

Several days ago I received an e-mail from the press office (press person?) at the Energy Information Administration (EIA). At the time I looked at it, thought “hmm… interesting” and set it aside. Been thinking about it off and on since. The crux of the information was this graphic:













A few thoughts that came to mind immediately were 1) Wow, look what a monster recession did to our industrial energy consumption and 2) That brick-colored stripe is rather tall.

The other two categories of energy consumers aside from industry are residential (people at home), commercial (businesses) and transportation. In 2011, industry was responsible for over 30% of total energy consumption, according to the EIA. Transportation is approximately a similar amount, and residential and commercial users split the rest.

The more I thought about it, though, the more I reflected on basic chemicals’ place in the lifecycle of a finished good – maybe a shampoo, or a carpet or a car – and the chunk of energy use it represents. A branded goods manufacturer that does a lifecycle analysis – say to measure energy use or emissions – would no doubt zero in on chemical inputs as a large contributor to its overall footprint.

Of course, mining and agriculture have their own energy footprints, as shown in the graphic. Obtaining any raw material will bring energy baggage with it.

The graphic also reinforced a message that my C&EN colleague Alex Scott recently wrote about in the magazine. He attended an event in Brussels called the Global Chemical Industry Sustainability Summit. In his report, he writes that chemical industry representatives were chided for their “business-as-usual model” and told that other industries, including customers of the chemical industry, were beginning a trek toward zero targets for things like oil use and CO2 emissions. Should someone hold a similar event in the U.S., this illustration might appear in the presentation.