Solar Boom in Japan, with Battery to Match

Japan has been making large strides in solar since the Fukushima disaster, and those efforts look set to accelerate, at least in the near term. The country, which is not blessed with a wealth of fossil fuel resources, had relied heavily on nuclear energy, but it is now spending big for solar installations as well as energy storage. Just in time for Earth Day, Bloomberg is reporting that the Ministry of Economy, Trade and Industry plans to spend around $204 million on a battery system to stabilize the flow of solar power on the northern island of Hokkaido. The location’s less expensive land has attracted ground module solar power systems. The report did not state what type of battery will be used, though Cleantech Chemistry will be looking for updates. The ministry is targeting 2015 for the system to be up and running (up and storing?) The country began a generous feed in tariff for solar in July, which attracted just over 1.33 GW of installations through the end of January of this year. According to IHS iSuppli, the FIT is around 42 cents (in U.S. currency) per kilowatt hour, which is quite generous. Though the tariff may be scaled back as systems come online, IHS forecasts that Japan will install 5 GW of solar capacity this year. To put that figure in perspective, the European Photovoltaic Industry Association reports that 30 GW of grid-connected solar was installed globally in 2012, about the same as in...

Read More

Natural Gas and Cleantech

Cleantech fans: it is time to educate yourselves. Set aside for a moment your interest in wind energy, solar, bio-based chemicals, biofuels, and electric vehicles and read this week’s story about what the U.S. may do with its abundant natural gas. Here are some things that the country can do with natural gas: it can make electricity, upgrade it to useful chemicals, use it as a transportation fuel, or export it. The U.S. has access to so much natural gas that it could do all four things. And do them all cheaply, and profitably compared to our trade partners. At this point, even if you only use your knowledge about the promise of cleantech at cocktail parties, you should start to think about the impact of abundant natural gas on your favorite technologies. My colleagues Jeff Johnson and Alex Tullo’s feature asks what effect DOE policies on liquefied natural gas exports might have on the chemical industry and the wider economy. The flip question – not addressed in the story — is what impact natural gas that stays in the U.S. will have on the competitiveness of renewable energy and materials innovations. At the recent ARPA-E show, I saw energy technology that is seeking to take advantage of abundant natural gas – and the speakers at the conference were rather fixated on the topic. (see my story on the ARPA-E Show in this week’s issue). Alert readers will recognize which minority member of the Senate appears in both articles. I hate to give away the ending of the natural gas story but (spoiler alert!) U.S. natural gas prices will stay low even if we ramp up exports. When I was in school and my class learned about the Panama Canal, one of my classmates couldn’t understand why engineers had to build locks to compensate for the different sea levels between the Pacific and Atlantic. Once you connected the two oceans, wouldn’t they level out? Well, no. Similarly, there is a small aperture through which natural gas would escape U.S. borders via the export market. Liquification imposes a significant surcharge on every unit of gas, it costs a lot to build a plant to do it, the export hubs need to be brought online, and there is a backlog in approving facilities. But read the full story and get the full...

Read More

There’s Still Hope for Energy & Materials Start-ups

Funding for cleantech and related start-ups can be feast or famine. Government, venture capital, and corporate backing ebbs and flows. One constant, though, is that technology entrepreneurs should never miss a chance to get in front of investors. On February 25, start up executives will pitch to investors at the ARPA-E Energy Innovation Summit in Washington, DC. An event run by Future Energy will provide the space, a slide template, and a panel of experts for Q&A. In the audience will be people from corporations and other kinds of investors who will be attending the ARPA-E gathering to hear from the likes of Michael Bloomberg and the folks who dispense money from DOE. Future Energy is a part of a larger organization called Ultralight Startups. Shell, through its program Shell Game Changer, is the main sponsor. Future Energy founder Graham Lawlor tells Cleantech Chemistry that unlike internet startups which are legion and fill to overflowing many investor pitch events, his events are specific to energy and cleantech and he has to go out and find tech start-ups for the slots. But he’s not worried, because the scientists and engineers are out there with good ideas. In 2012, Future Energy held two events in Boston and two in New York. This year they’ll head also to Silicon Valley. At the ARPA-E event in DC, two of the companies pitching won their slots through an online voting mechanism. You can go to their website to apply for future events through the first half of the year (tell your friends!). You can see a video of United Catalyst at an event last year pitching technology for inorganic catalysts designed for cellulosic ethanol production. The pitches are only 3 minutes long, so its good to pare down your story to bare essentials. Also investing seed money in energy start-ups is Lux Capital, which today announced commitments totally $245 million for its third venture fund. The fund is fairly broad- the firm is looking for unusual opportunities in energy, healthcare and technology. The ever-enthusiastic Josh Wolfe, Lux Capital co-founder and managing partner, describes his strategy this way: “At Lux, we are sticking to our knitting to build a concentrated portfolio of extraordinary companies in unconventional areas,” says Wolfe. “Many of the themes and entrepreneurs we’re excited about—in 3D printing, metamaterials, robotics and breakthroughs in solid-state electronics—are non-obvious, and that’s by design. We believe the combination of brilliant entrepreneurs and deep scientific innovation drives immense industry shifts and profits. Both at Lux and our companies, we’re growing rapidly and calling for the boldest and brightest that want to invent and invest in the future.”...

Read More

Thin film solar maker Miasolé bought by China’s Hanergy

Hanergy, a China-based renewable energy company, announced today that it has completed its acquisition of thin-film solar firm Miasolé. The buyer first reached a purchase agreement with Miasolé’s investors in September. Of the many photovoltaic manufacturers out there – and/or recently bankrupt – Miasolé is one of the most elegant. And not just because of its attractive-sounding name (news reports online have stripped it of the accent aigu — it’s pronounced MiasolA). Miasolé makes thin film solar cells of the copper indium gallium selenide variety. This is an attractive technology because it is possible to make CIGS as efficient as heavier traditional polysilicon solar PV. The first thin-film technology was based on amorphous silicon (a technology that Hanergy plans to abandon), which was much less efficient than traditional solar cells. In theory, CIGS can be manufactured in long, flat, flexible sheets and installed in places that cannot support other kinds of solar panels. For now, CIGS material on the market has an upper-bound efficiency of about 12% or so, while traditional solar starts there and goes up a bit. CIGS are more expensive, and are much more difficult to manufacture. For Miasolé’s part, in May the company reported that NREL confirmed a 15.5% efficiency on its newest commercial, flexible CIGS cells. It is not clear what the efficiency of a fully installed system would be. But it shows that this firm has been pushing the technology. Back in 2011, it worked with semiconductor maker Intel to help it ramp up its manufacturing. At the time, the company said it was using a low-cost sputtering technology for materials deposition. News reports have estimated that Hanergy spent about $120 million to buy Miasolé’, a company that was valued as high as $1.2 billion in 2008. Hanergy makes most of its money by generating power from hydroelectric installations. Last year it also snapped up Solibro, a unit of Germany’s solar manufacturer Q-Cells. Hanergy says it will keep the Miasolé CIGS manufacturing operations going in California. Meanwhile, another CIGS start-up, SoloPower, recently began production in Portland,...

Read More

What the Election Means for Climate, Energy & Cleantech

Update: Here’s a link to C&EN’s election story – including new House & Senate leaders in energy-related roles. It’s been a quiet time in cleantech news lately, what with Sandy and the election happening in back-to-back weeks. But the election – and the superstorm – are likely to have meaningful long-term impacts on energy policy. I took a tour around the internets to see what analysts and cleantech-ers are saying in their reaction to the election results. Though it was past my usual bedtime, President Obama’s victory speech caught my ear when he remarked “We want our children to live in an America . . . that isn’t threatened by the destructive power of a warming planet.” With Congress still divided, most policy wonks suggest that any energy and environmental policy changes will have to be led by the White House. Things to watch include any movement to block the Keystone Pipeline or push forward with EPA regulations on smog that were delayed due to cost concerns. Environmentalists have signaled that they will be putting pressure on the President to use national policy to address climate change. Look for Bill McKibben, activist, author and co-founder of climate change group 350.org to be very vocal. He was quoted in three articles I read. Energy and cleantech activists are pressing for a national renewable portfolio standard that would require power generators to obtain 30% of electricity from renewables by 2030. Nearly 30 states and D.C. have such a standard, the most well-known and successful is California’s, which is headed to 33% by 2020. Wind energy backers will work to return the production tax credit. The Washington Post points out that Obama recently spoke about upgrading energy efficiency standards for buildings – codes are currently set by state and local governments. And renewables businesses will be looking for government action that might help them gain financing for facilities or adjust subsidies on competing oil and gas producers. On the other hand, Obama has been pursuing an “all of the above” energy strategy that is likely result in further development of domestic oil and gas (including hydrofracking) resources. Perhaps most fascinating to me, though also the most far-fetched, is discussion about whether the fiscal cliff, tax reform, and the deficit will drive Congress to think about introducing a carbon tax. Hmmmm… My favorite takes so far on the election and energy policy: From the Washington Post: Obama to continue efforts to curb greenhouse gases, push energy efficiency Politico: Obama’s green cred on the line in second term Marc Gunther: For green business, blue skies ahead. For climate policy, who knows? Huffington Post: Ron Pernick on Five Cleantech actions for President Obama...

Read More

SoloPower, Gevo: Can a capital-light strategy save cleantech?

I wish I could be in Portland, Oregon today to watch SoloPower start up its first production line of thin film CIGS solar panels. The company says it can manufacture in a continuous process to make its solar material in strips as long as one mile. The company asserts that its thin, flexible modules are a good fit for building-integrated solar, especially in locations where heavier, traditional glass panels cannot be installed such as on warehouse roofs. The modules are certified to an efficiency rate of 9.7 to 12.7%. But it’s not so much the technology itself that is interesting, but rather SoloPower’s business model and whether it can succeed in selling what it admits is a premium-priced product while the traditional silicon modules continue to drop in price, taking down many efficient producers with them. SoloPower is already having to bear up under scrutiny because it will be able to tap into almost $200 million in DOE loan guarantees, under the same program that was behind the Solyndra kerfuffle. NPR did a nice job this morning interrogating SoloPower CEO Tim Harris. Read or listen to the short piece here. NPR rightly points out that Solyndra was backed by $1 billion in private funding and accessed half a billion dollars in its own DOE loan before going bankrupt. But SoloPower doesn’t have a billion bucks to lose, and perhaps that is a good thing. Instead of comparing SoloPower to Solyndra I’d like to compare it to Gevo, a maker of biobased isobutyl alcohol (what it calls isobutanol). Both firms are pursuing a capital-light strategy. SoloPower’s first production line will have a small eventual annual capacity of 100 MW. So far, it has spent only its own investors’ dollars. Gevo, a now public company, is spending somewhere around 25% to one-third the cost of a new fermentation plant by converting existing corn ethanol plants. When a company that has a technology without a track record wants to build its first large plant, it faces financing risk on top of technology risk. Range Fuels built a shiny new plant in Georgia to make ethanol from wood chips. But since the technology did not work upon start-up, Range could not pay its monthly loan overhead, and the factory was repossessed by its financing bank and sold at auction (Range also had a DOE loan guarantee). Early this week, Gevo told investors that it had stopped making isobutyl alcohol at its facility in Luverne, Minnesota. Instead, it turned the switch back to ethanol. Gevo’s plan to convert an ethanol plant in Redmond, South Dakota is on hold. The company said though it successfully...

Read More