A Microhybrid is Not a Tiny Car

This week’s issue has C&EN’s update on what’s going on with the Obama-touted advanced battery industry. In short, the U.S. can make many, many big batteries for various flavors of electric vehicles. More batteries, in fact, that the U.S. has electric vehicles. One flavor of vehicle that may be a new one to many is a microhybrid. These are not tiny cars, nor are they like the all-electric Nissan Leaf or plug-in hybrid Chevy Volt. Rather, a microhybrid system is part of a less radical design intended to help gas-powered cars use less gas. They use some version of what are called start-stop batteries. Andy Chu, vice president of marketing & communications at battery firm A123 Systems explains: “With start stop batteries, also called micro hybrid batteries, the primary function of the system is that it turns the engine off when you stop. And it turns the engine back on automatically. Just by turning off the engine at a stoplight you can save a few percent on fuel economy. Some of the batteries just crank the engine. But when you ask it to do other things – like launch assist – or move the vehicle from a stopping point – that is the hybrid function. This is great because the battery can respond instantaneously. You need something beyond typical lead acid, like for regenerative braking. The A123 solution has higher charge capability, then you don’t waste braking energy as heat. Also, it extends the life span – you use the battery much harder – with A123 you don’t need to replace the battery as often as with a lead acid. Weight is another advantage that helps with fuel economy savings. Compared to a lead acid version, we expect 50% better fuel economy gain. If you gain 10% with lead acid, you’d gain 15% with our battery. It is very difficult to save weight in vehicles. A lead battery is very heavy – so its easy to take weight out there. Automakers, especially in Europe, are really moving to microhybrids. They require very little design change; the battery and alternator are a little bigger, lighter, and provide better fuel economy. They are easy to integrate. So microhybrids are part of our message – though electric vehicles are the sexy topic, advanced batteries can be used across a wide variety of vehicles.” Lux Research analyst Kevin See says the hybrid-you’ve-never-heard-of will be responsible for the bulk of future growth of energy storage technologies for vehicles, along with batteries for electric bikes. “Although battery prices for all-electric and hybrid passenger cars are dropping, they’re not dropping far enough or quickly enough to...

Read More
GM, BMW, Toyota: More Work to do on Batteries
Dec02

GM, BMW, Toyota: More Work to do on Batteries

A few days after GM magnanimously offered to give loaner cars to any Volt driver who might experience post-crash burning battery problems, BMW and Toyota announced that they would work together to develop lithium ion batteries for hybrids and all-electric cars. This is what BMW’s Klaus Draeger had to say about why it was neccesary for the two auto giants to join forces: Battery technology is crucial for the future of hybrid technology  – but also for the future of individual mobility. Whoever has  the best batteries in terms of function, cost, and quality in their  vehicles will win more customers. We want to set benchmarks in the  future with both: hybrid and electric cars. It clearly makes sense for experienced and innovative companies to  pool their expertise and power with such future-orientated  technologies. Toyota and the BMW Group are perfect partners: Toyota is  the most sustainable and experienced producer in the high-volume  segment. And Japan, of course, is the country that has made hybrid  cars well known around the globe. BMW will help out Toyota by supplying it with what it calls clean diesel engines that the Japanese firm can use to improve the cars it would like to sell in Europe, where diesel engines are preferred. Draeger characterized the battery partnership as involving basic research. Generally speaking, things like range and charging times are the main targets for research but… GM’s experience with the Volt suggests that safety issues are still in play. Lithium ion batteries can reach high (flammable) temperatures if the separator material between the anode and cathode is breached, causing a short in the battery. That is why the problem with the Volt seems to happen in cars after impact  (crashed on purpose for safety testing) – presumably something compromised the separator in the battery. Lithium ion car batteries come in different designs. Interestingly, no similar problems have yet been reported for the all-electric Nissan Leaf. Still, they commonly feature many individual battery cells that are grouped together and surrounded by an active management system that is supposed to prevent runaway reactions that would lead to fire. I suspect that these systems are still a p0int of design weakness. Even if they work pretty well, it seems a more competitive design for a lithium ion car battery would be one that does not require an additional surrounding system to prevent disaster.  (Some would call this “inherently safer design”) To read more about the safety testing that revealed the Volt’s possible fire issues, check out the coverage in the New York Times....

Read More

Avoid The Regrettable Substitution

“Avoid the regrettable substitution” almost sounds like advice you’d find in a fortune cookie (and is good advice to follow in many aspects of life), but it is actually the driving theme behind a new tool to help companies formulate or use less toxic products. Imagine a company that replaces a plasticizer in their package with something – anything – that’s not called bisphenol A, only to later discover that their chosen replacement is an endocrine disruptor. Woops. The name on the container containing the plasticizer – the Brand – is not likely the entity that is formulating the stuff the container is made of. But it’s the Brand that stands to lose if there is a regrettable substitution. So a group of advocacy organizations and businesses called BizNGO have gotten together and designed a protocol to help companies work with material suppliers to make sure that better really is better. The BizNGO Chemical Alternatives Assessment Protocol is a step by step guideline to help companies navigate information about competing alternatives. Until everyone has access to full data sets on toxicity, exposure, and health and environmental effects it may make its mark as a tool that helps companies realize how much information about their products is missing. Come to think of it, that’s probably why the same group publishes a Business Case for Federal Chemicals Reform. News coverage about the effects on human health or the environment of things like BPA or flame retardants often have a “on the one hand, on the other hand” kind of structure to them. On the one hand BPA can leach out of water bottles or food cans and be ingested by consumers. On the other hand, BPA helps make containers more safe than they may otherwise be. On the one hand, BPA may cause human heath effects, on the other, maybe not so much, and besides, there are few obvious replacements. And so on. Rather than go around in circles, the protocol suggests a particular order of operation for assessing alternatives that is written from the business point of view. BizNGO launched the tool today – the group held a meeting for its members in Washington, DC. In addition, it has published a prelude to a new tool, called Principles for Sustainable Plastics that will help companies made decisions of what “green” attributes of plastics they should be aiming for – biobased? recycled? Mark Rossi leads the group, and he says the businesses most active in BizNGO are a rather diverse lot – from retailer Staples to healthcare provider Catholic Healthcare West, to manufacturers of specialty construction materials. They started a few years ago with a first principle: know and disclose chemical...

Read More

DSM Stakes Out an Eco-Friendly Niche

Dutch chemical firm DSM has been much in my sphere lately. In this week’s issue, I write about the firm’s engineering plastics, which were designed for recyclability and do not contain halogenated compounds. When I’m not writing about earth-friendly technology, I cover the more day-to-day side of the chemical business by writing about company earnings. This week I am reviewing earnings results from European chemical firms and I note that DSM touts its sustainability efforts in its quarterly report. Most chemical firms relegate this information to their annual report, or to a separate yearly sustainability report. DSM reported on the number of products in its pipeline that meet its own criteria for better environmental profiles (they call them ECO+ solutions). Apparently the pipeline is chock full of ECO+; 87% meet that benchmark. It reported on the ECO+ proportion of current products (40%) as well as progress toward energy efficiency goals. DSM has targeted a 20% improvement in 2020 compared to 2008. The wording of the report indicates that these measures are updated at least twice per year. Usually, earnings reports are intended to inform investors of the financial results of a firm over a short period of time. Sustainability efforts, of course, tend to take a longer-term view. I wonder what credit investors give DSM for claiming this eco-niche and for the transparency of semi-annual updates. We should remember that the reports have other audiences in addition to investors – stock analysts, regulators, members of the communities where a firm operates, and employees. Oh, I forgot the media. That’s another...

Read More

Getting to 54.5 MPG

If your very next car purchase had to meet the new mileage standards announced today, you’d be buying something roughly the size of a thimble. It would certainly be smaller than the petite Ford Fiesta, which gets a comparatively gluttonous 38 miles per gallon, highway. Or, you could do away with any MPG concerns and get a new all-electric Nissan Leaf, though the range can dip down to around 62 miles.  Forget the comfy hybrid Toyota Prius – that one only gets 50 MPG overall. Luckily for car buyers, automakers have until 2025 to get their fleet average up to 54.5 MPG. By then, the choices will be much different than today. Today’s New York Times story on the increase focuses on plans for hybrid and electric cars. But other technologies will have to come into play. According to Sujit Das of the Center for Transportation Analysis at Oak Ridge National Laboratory, drive train changes will not be enough to meet the new standards. There will be more electric and hybrid cars, but overall, Das says, passenger cars will also have to be made smaller and lighter. Part of the problem is that it is too expensive to make larger trucks and SUVs high mileage, and automakers still want to sell a lot of those. So, regular cars will have to be designed for REALLY high gas mileage to make the averages work out. Oak Ridge scientists estimate that for every 10% of weight reduction in a vehicle, the gas mileage improves by 6.5%. To make that happen, they are studying how automakers can use lightweighting materials including advanced high-strength steels, aluminum, magnesium, titanium, and composites including metal-matrix materials and glass- and carbon-fiber reinforced thermosets and thermoplastics. Automakers have been using lighter weight materials for years, but not in a quest to increase mileage. According to a report [PDF] by the Pew Center on Global Climate Change, “Although technology to improve vehicle efficiency is available and is being used in vehicles now, vehicle manufacturers have directed much of the potential of the technology to purposes other than fuel economy, such as making vehicles larger and more powerful.”  That’s a strategy that they’ll have to re-think. Still, carbon fiber is not the first choice for automakers. Not too long ago I priced a carbon-fiber bicycle, and decided it was way too expensive. A carbon fiber car would be like George Jetson’s flying car that folds into a suitcase. It doesn’t exist, and if it did, very few people could afford it. Though parking would be a snap. The cost problem is a real barrier, which is why Oak Ridge scientists are also studying...

Read More
It’s Sappy – Ford’s plan for Dandelions
May12

It’s Sappy – Ford’s plan for Dandelions

Cleantech chemistry doesn’t know where you, dear reader, are sitting right now. But it’s quite likely that if you look out your window at the nearest patch of green, you will see some of these ubiquitous weeds: But as gardeners will tell you, it’s only a weed if it appears where it is not wanted. But dandelions ARE wanted in Wooster, Ohio, where a team of agricultural researchers are right this very moment tending to a crop of Taraxacum kok-saghyz or Russian Dandelions. The milky sap of the plant’s taproot contains a high-quality rubber that mirrors the performance characteristics of the Brazilian rubber tree, source of almost all natural rubber.  Researchers at The Ohio State University’s Ohio Agricultural Research and Development Center will provide samples of rubber to Ford Motor Company. Ford says it is interested in blending the rubber with various plastics and using the flexible materials in auto interiors for cup holders, floormats, and trim. What Ford does not mention, however,  is that the research picks up on an interesting piece of U.S. industrial history.   As the curators of the Edison & Ford Winter Estates in Fort Meyers Florida explain on their website: During WWI the price of rubber rose dramatically.  Thomas Edison, Henry Ford and Harvey Firestone were concern with this national issue.  Edison planned to discover a domestic source of rubber from a latex (a white milky sap) producing plant.  The three friends formed the Edison Botanic Research Corporation in 1927 and the lab was built in 1928 to support rubber research and development. [By the way, you can visit this lab] By 1929, Ford was convinced that he and his friends had found the answer in a common yellow weed called… Goldenrod. But as a Time Magazine article from that year points out in a footnote, “Mr. Edison has found traces of rubber in 1,200 U. S. plants, of 16,000 he has examined.” At the time, the article goes on to say “Neither Inventor Edison nor anyone in his organization could guess yet at manufacturing costs or how many acres of goldenrod would produce a ton of rubber.” The search for plant-based sources of natural rubber that could be produced in or near the States was revived again in World War II when the Axis powers took control of rubber plantations in southeast Asia, and the U.S. was again in short supply of the material for its war efforts. That research included looking at the Russian dandelion. But during the war, as chemists know, research scientists perfected processes for making large quantities of synthetic rubber. Still, the need for natural rubber remains – like for aircraft...

Read More