↓ Expand ↓

Category → Design

Green Business Plan Competition: Start your engines

The ACS Green Chemistry Institute will be hosting a business plan competition on June 18, 2014 at the 18th Annual Green Chemistry and Engineering Conference, which will be held outside of Washington D.C.

The competition is for early stage ideas – but not ideas for renewable energy production or biofuels (there are no shortage of competitions for those). If you have an idea for a green innovation that only chemists would truly understand, this is your chance.

The first deadline to be aware of is April 25 – that’s when to submit your 10-15 slide PowerPoint presentation and optional YouTube video. Just aim to be done by Earth Day and you’ll be right on schedule.

The competition website includes a host of great links to advice on how to communicate and advance your start-up idea. And don’t forget to review (memorize them!) the 12 Principles of Green Chemistry.

Help Solve a Water Problem

With blogs, twitter, and e-mail, it’s pretty rare these days that I get a phone call from a reader. But yesterday I heard from an ACS member who has a sort of meta-problem. That is, he hopes to get some outside thinking to help him define his problem, as well as to point him in new directions for possible solutions.

Here’s the problem:

Fresh water is a scarce commodity in many places on the planet. Several dry-arid environments have industrial operations producing excess amounts of water. That water contains excess salts, boron, ammonia, silica, and other minerals. Current operational strategy is to inject the water into below-ground natural reservoir space but that option may be limited in the future. Alternatives to disposal revolve around traditional approaches to recycle or reuse that water but I’m seeking new thinking and brainstorming of even better ways to use, recycle, and/or a novel alternative scenario for the water.

With the drought in California, and the tightening of restrictions for industry’s use of water, this type of problem seems likely to pop up more and more frequently, though the specific quality issues vary from industry to industry.

Please send your thoughts and insights to

peter.vanvoris AT att DOT net 

Or feel free to hash out your thoughts, questions, or ideas in the comments section below. Once the problem has been looked at from several angles and better defined, it may appear on crowdsourcing websites like Innocentive.

 

And if you need a little clean water inspiration, you can read this week’s C&EN story on Beefed-up bacteria that get the lead out of water

Or a 2012 story on Treating Water From Hydraulic Fracturing

Or you can check out the website of Simbol Materials, which is scaling up its technology to mine hydrothermal brines for lithium, manganese, zinc, and potassium.

 

Harnessing Entropy

In Solar, a novel by acclaimed author Ian McEwan, the protagonist, a physicist named Michael Beard, has been tasked to evaluate submissions from the public sent to a UK panel looking for new ideas for clean energy. He divides them into piles: those that violate the first law of thermodynamics, those that violate the second law, and those that violate both. This cleantech reporter could relate.

That’s why ideas that start with the laws of thermodynamics – rather than those that have to account for them later – are so attractive. Take entropy, for example. In our daily life we struggle against entropy – the iPod headphone wires that get totally knotted up in my handbag, the fact that the neatest person you know still has a junk drawer, and so on.

This week’s issue of C&EN explores research that tries to harness the universe’s arrow-like movement to disorder. When CO2 laden emissions from power plants are released into the atmosphere, the CO2 mixes into the ambient air mass. As Naomi Lubick explains, an electrochemical cell could harvest the energy that is released when these two gases mix. Researcher Bert Hamelers of the Dutch water treatment tech center Wetsus, has developed a lab scale device to do just that.

But Lubick points out that to implement such a solution would require overcoming at least two hurdles – one, the sulfur dioxide and nitrogen oxides may foul the system’s membranes. And two, it is no easy task to dissolve huge amounts of CO2 in liquid.

Dissolving gas in liquid requires toil and trouble. Credit: Wikimedia Commons

Dissolving gas in liquid requires toil and trouble. Credit: Wikimedia Commons

In fact, dissolving the gas uses quite a bit of energy. Which reminds me of another literary reference: the witches of Shakespeare’s MacBeth chant “Double, double, toil and trouble; Fire burn and cauldron bubble” – indeed, there is some toil and trouble involved.

I know that many other researchers and technology companies are working on these two problems. For example, there are programs working on carbon capture and storage that are using liquids, catalysts and membranes to grab components of power plant emission gases. And firms such as Calysta Energy and Lanzatech have plans to use microbes to make useful products out of gases such as methane and flue gas. For that, they need to dissolve the gas in water. It is not a trivial problem.

 

MPGs, HEVs, PHEVs Oh My!

It appears that recent efforts to raise miles per gallon on the nation’s auto fleet – spurred by government regulations – have hit an interesting tipping point. As this guest post by my colleague Jeff Johnson points out, both consumers and automakers have learned to love running lean.

Ford’s Ecoboost engine goes farther. Credit: Ford

————————————————

Despite the recent bankruptcy of Department of Energy supported vehicle battery maker A123, auto analyst Alan A. Baum stressed last week in a briefing and report that fuel efficient and electric vehicles are here to stay. Driven in large part by new federal fuel-efficiency standards, the average vehicle fuel efficiency for model year 2012 reached 23.6 miles-per-gallon, more than 1 mpg above 2011, Baum says, adding that this is the largest one year mileage jump in five years.In previous years, Baum says, when fuel efficiency increased, sales dropped, but for model year 2012, sales are on track to increase by 10% above 2011 levels to some 14 million units. Baum adds that electric-gas hybrids, coupled with plug-in electric vehicles, are on track to top half-a-million in sales in 2012.

Efficiency conscious consumers, he notes, also have more choices—the number of high efficiency model vehicles has grown from 28 in 2009 to 61 for 2013 model year. Also Baum predicts that automakers will increasingly promote vehicle efficiency to increase profits and sales. He singled out Ford’s Series F trucks that advertise an “Ecoboost” turbo-charging system that adds $1,000 to the cost of the truck but gets more horse power out of a smaller engine. – Jeffrey Johnson

————————–

For those of you who know your way around a torque wrench and want to know how an Ecoboost engine works, I highly recommend Johnathan Gitlin’s guide over at Ars Technica.

iPad: Pushing the Limits of Materials

In addition to the famed design sense and technological know-how that make the iPad possible, Apple also must call in some key material innovations to fit all that fun into such a small package.

In this week’s issue of C&EN, I talk to the companies that make materials for today’s hot mobile devices and their sleek touch screens. Like Corning’s Gorilla Glass. And I show how surface chemistry‘s contributions to making better consumer goods is spreading to other categories including sneakers, make-up, house paint, and new LED light bulbs.

The new iPad, with its 4G internet speeds and energy hogging retina display, is also pushing the limits on battery materials. It is a bit thicker and heavier than the first version, mainly due to needing a larger battery. In a guest post on a Forbes Tech blog aimed at executives, Noam Kedem, VP of marketing for Leyden Energy, says that the new iPad’s need for more power also makes it run hotter, and also is the reason it takes longer to recharge the battery. Heat, and irreversible chemical changes over a battery’s lifespan, are major materials problems for lithium ion batteries, he writes.

Leyden Energy is a Calif.-based firm has developed a new electrolyte chemistry for batteries that the company claims will help to fix the heat/degradation process. Almost all consumer rechargeable li-ion batteries use LiPF6 as their electrolyte; Leyden is working with a chemistry based on lithium imide. According to the firm, lithium imide makes batteries much less temperature sensitive.

I hope that Apple’s engineers have seen this week’s lead news story by my colleague Mitch Jacoby on research that tantalizingly suggests new chemistry for “low-cost batteries with greater capacity and longevity than today’s commercial Li-ion batteries.” In this case, it is not the electrolyte but rather the anode that has been improved. In research published in the ACS Journal NanoLetters, Pacific Northwest National Laboratory scientists were able to make anodes of silicon-carbon nanocomposite. Li-ion battery anodes are normally made of carbon.

Past efforts to make silicon anodes ran into problems; during charging, they swell to three times their size. In addition to making a more stable version, the PNNL folks found the resulting battery “exhibited a charge capacity more than five times as great as that of conventional carbon anodes.” Wooo! That’s a lot more YouTube on the ol’ iPad. The story comes complete with descriptive photos and a video of the anode undergoing the charging process.

[3/27/2012 - updated to reflect that Leyden "has developed" and add corrected "imide"]

Spring Themes: Composting

[you can skip my musings and go straight to Alex's compostable plastics story!]

Today’s forecasted high temperature where I live in the Northeast is 78 degrees. That just doesn’t seem right. This time last year, we still had an impressive layer of snow which didn’t melt until sometime in April. [insert random thoughts of global warming, La Nina, and how yesterday was almost 20 degrees warmer than the forecast promised]

Over the weekend I took the opportunity to turn my compost pile. It’s got mostly kitchen scraps, a few bits of brown paper bag (worms love ‘em) and leaf litter. Home composting is both an art and a science – my pile had too much nitrogen and not enough carbon, so I added more dried leaves.

I also noticed a plastic spoon in the pile, normally a no-no. But this one was made of PLA, a plastic derived from corn that is supposed to be biodegradable. It still looked pretty new, though, mostly because my backyard pile cannot reach the high temperature and rabid microbial activity of an industrial scale composting operation.

If I lived in San Francisco (and today it feels like I do!) I would put the spoon and my kitchen scraps, and perhaps some lawn wastes into a compostable plastic bag and set it out to be picked up. This week’s issue of C&EN features an in-depth, fascinating story by Alex Tullo on how compostable plastic trash bags – plus disposable dinner ware – can enable cities to divert 50% or more of trash away from landfills.

From the story:

In a landfill, food scraps generate methane, a much more potent greenhouse gas than CO2. They also form acids that leech out of landfills. “If you ask all these cities what the largest component of their waste going to the landfill is, it’s food,” he says. “And what is one of the worst things to go to the landfill? It’s food. The only thing worse is hazardous waste.” [quote from Jack Macy, commercial zero-waste coordinator for SF Environment, San Francisco’s environmental department.]

Now think about your household’s waste. To reach San Fran’s goal of diverting 100% of municipal trash from landfills, it would have to be either recycled or composted. Plastics can be recycled, but if they get into the composting supply (like a random fork, or the trash bag holding the food waste) then you’ve already broken your system.

A Microhybrid is Not a Tiny Car

This week’s issue has C&EN’s update on what’s going on with the Obama-touted advanced battery industry. In short, the U.S. can make many, many big batteries for various flavors of electric vehicles. More batteries, in fact, that the U.S. has electric vehicles.

One flavor of vehicle that may be a new one to many is a microhybrid. These are not tiny cars, nor are they like the all-electric Nissan Leaf or plug-in hybrid Chevy Volt. Rather, a microhybrid system is part of a less radical design intended to help gas-powered cars use less gas. They use some version of what are called start-stop batteries. Andy Chu, vice president of marketing & communications at battery firm A123 Systems explains:

“With start stop batteries, also called micro hybrid batteries, the primary function of the system is that it turns the engine off when you stop. And it turns the engine back on automatically. Just by turning off the engine at a stoplight you can save a few percent on fuel economy. Some of the batteries just crank the engine. But when you ask it to do other things – like launch assist – or move the vehicle from a stopping point – that is the hybrid function. This is great because the battery can respond instantaneously.

You need something beyond typical lead acid, like for regenerative braking. The A123 solution has higher charge capability, then you don’t waste braking energy as heat. Also, it extends the life span – you use the battery much harder – with A123 you don’t need to replace the battery as often as with a lead acid. Weight is another advantage that helps with fuel economy savings. Compared to a lead acid version, we expect 50% better fuel economy gain. If you gain 10% with lead acid, you’d gain 15% with our battery. It is very difficult to save weight in vehicles. A lead battery is very heavy – so its easy to take weight out there.

Automakers, especially in Europe, are really moving to microhybrids. They require very little design change; the battery and alternator are a little bigger, lighter, and provide better fuel economy. They are easy to integrate. So microhybrids are part of our message – though electric vehicles are the sexy topic, advanced batteries can be used across a wide variety of vehicles.”

Lux Research analyst Kevin See says the hybrid-you’ve-never-heard-of will be responsible for the bulk of future growth of energy storage technologies for vehicles, along with batteries for electric bikes. “Although battery prices for all-electric and hybrid passenger cars are dropping, they’re not dropping far enough or quickly enough to fuel the sort of broad adoption that advocates expect,” says See. “Instead, the substantial growth we see for vehicle-related storage technologies will be powered mostly by e-bikes – which are shifting from lead acid to Li-ion battery technology – and microhybrids, which offer a more incremental, low-risk way for automakers to improve fuel efficiencies.”

A Lux Research report states that microhybrids “ are set to surpass these other passenger vehicle types in terms of both total storage and dollars in 2016, growing from 5.1 GWh and $495 million, to 41 GWh and $3.1 billion –  CAGRs of 52% and 44%, respectively.”

GM, BMW, Toyota: More Work to do on Batteries

A few days after GM magnanimously offered to give loaner cars to any Volt driver who might experience post-crash burning battery problems, BMW and Toyota announced that they would work together to develop lithium ion batteries for hybrids and all-electric cars.

This is what BMW’s Klaus Draeger had to say about why it was neccesary for the two auto giants to join forces:

Battery technology is crucial for the future of hybrid technology  – but also for the future of individual mobility. Whoever has  the best batteries in terms of function, cost, and quality in their  vehicles will win more customers. We want to set benchmarks in the  future with both: hybrid and electric cars.

It clearly makes sense for experienced and innovative companies to  pool their expertise and power with such future-orientated  technologies. Toyota and the BMW Group are perfect partners: Toyota is  the most sustainable and experienced producer in the high-volume  segment. And Japan, of course, is the country that has made hybrid  cars well known around the globe.

BMW will help out Toyota by supplying it with what it calls clean diesel engines that the Japanese firm can use to improve the cars it would like to sell in Europe, where diesel engines are preferred. Draeger characterized the battery partnership as involving basic research. Generally speaking, things like range and charging times are the main targets for research but…

BMW's all electric i3 concept car. Credit: BMW

GM’s experience with the Volt suggests that safety issues are still in play. Lithium ion batteries can reach high (flammable) temperatures if the separator material between the anode and cathode is breached, causing a short in the battery. That is why the problem with the Volt seems to happen in cars after impact  (crashed on purpose for safety testing) – presumably something compromised the separator in the battery.

Lithium ion car batteries come in different designs. Interestingly, no similar problems have yet been reported for the all-electric Nissan Leaf. Still, they commonly feature many individual battery cells that are grouped together and surrounded by an active management system that is supposed to prevent runaway reactions that would lead to fire. I suspect that these systems are still a p0int of design weakness. Even if they work pretty well, it seems a more competitive design for a lithium ion car battery would be one that does not require an additional surrounding system to prevent disaster.  (Some would call this “inherently safer design”)

To read more about the safety testing that revealed the Volt’s possible fire issues, check out the coverage in the New York Times.

 

Avoid The Regrettable Substitution

“Avoid the regrettable substitution” almost sounds like advice you’d find in a fortune cookie (and is good advice to follow in many aspects of life), but it is actually the driving theme behind a new tool to help companies formulate or use less toxic products. Imagine a company that replaces a plasticizer in their package with something – anything – that’s not called bisphenol A, only to later discover that their chosen replacement is an endocrine disruptor. Woops.

The name on the container containing the plasticizer – the Brand – is not likely the entity that is formulating the stuff the container is made of. But it’s the Brand that stands to lose if there is a regrettable substitution. So a group of advocacy organizations and businesses called BizNGO have gotten together and designed a protocol to help companies work with material suppliers to make sure that better really is better.

The BizNGO Chemical Alternatives Assessment Protocol is a step by step guideline to help companies navigate information about competing alternatives. Until everyone has access to full data sets on toxicity, exposure, and health and environmental effects it may make its mark as a tool that helps companies realize how much information about their products is missing. Come to think of it, that’s probably why the same group publishes a Business Case for Federal Chemicals Reform.

News coverage about the effects on human health or the environment of things like BPA or flame retardants often have a “on the one hand, on the other hand” kind of structure to them. On the one hand BPA can leach out of water bottles or food cans and be ingested by consumers. On the other hand, BPA helps make containers more safe than they may otherwise be. On the one hand, BPA may cause human heath effects, on the other, maybe not so much, and besides, there are few obvious replacements. And so on. Rather than go around in circles, the protocol suggests a particular order of operation for assessing alternatives that is written from the business point of view.

BizNGO launched the tool today – the group held a meeting for its members in Washington, DC. In addition, it has published a prelude to a new tool, called Principles for Sustainable Plastics that will help companies made decisions of what “green” attributes of plastics they should be aiming for – biobased? recycled?

Mark Rossi leads the group, and he says the businesses most active in BizNGO are a rather diverse lot – from retailer Staples to healthcare provider Catholic Healthcare West, to manufacturers of specialty construction materials. They started a few years ago with a first principle: know and disclose chemical products as well as any hazards. Since then, along with efforts by companies like Walmart and HP, companies far back in the supply chain have begun using tools (like Green Screen from Clean Production Action, which is also part of BizNGO) to disclose the chemical components of their products to their downstream customers. It’s a trend that is likely to pick up steam.

 

 

DSM Stakes Out an Eco-Friendly Niche

Dutch chemical firm DSM has been much in my sphere lately. In this week’s issue, I write about the firm’s engineering plastics, which were designed for recyclability and do not contain halogenated compounds.

When I’m not writing about earth-friendly technology, I cover the more day-to-day side of the chemical business by writing about company earnings. This week I am reviewing earnings results from European chemical firms and I note that DSM touts its sustainability efforts in its quarterly report. Most chemical firms relegate this information to their annual report, or to a separate yearly sustainability report.

DSM reported on the number of products in its pipeline that meet its own criteria for better environmental profiles (they call them ECO+ solutions). Apparently the pipeline is chock full of ECO+; 87% meet that benchmark. It reported on the ECO+ proportion of current products (40%) as well as progress toward energy efficiency goals. DSM has targeted a 20% improvement in 2020 compared to 2008.

The wording of the report indicates that these measures are updated at least twice per year. Usually, earnings reports are intended to inform investors of the financial results of a firm over a short period of time. Sustainability efforts, of course, tend to take a longer-term view.

I wonder what credit investors give DSM for claiming this eco-niche and for the transparency of semi-annual updates. We should remember that the reports have other audiences in addition to investors – stock analysts, regulators, members of the communities where a firm operates, and employees. Oh, I forgot the media. That’s another one.