Beta Renewables Officially Opens Italian Biofuels Plant
Oct10

Beta Renewables Officially Opens Italian Biofuels Plant

It’s official – Beta Renewables first commercial-scale cellulosic ethanol plant is open in Crescentino, Italy. The roughly $200 million plant can take in up to 270,000 tons of biomass per year and produce 20 million gal of second-generation ethanol per year. Parent company Mossi & Ghisolfi put up the dough to build the facility without any government subsidies. It’s an unusual funding model, to say the least! This project leads the first crop of cellulosic biofuels facilities to reach start-up. Beta Renewables, along with its sister firm, engineering company Chemtex, have put together a facility that produces sugars from cellulosic biomass and then ferments those sugars into ethanol. The feedstock includes wheat straw and an energy crop called Arundo donax, or Giant Reed. I just want to point out that this is the second blog post in a row discussing commercial-scale cellulosic biofuels facilities (see below for KiOR). Does this count as the official start of the cellulosic biofuels industry? Just to have fun with a little bit of contrast, back in July, a ginormous first generation ethanol plant started up in Hull, UK. The Vivergo Fuels plant cost $448 million to build and will produce 110 million gal per year of ethanol. The feedstock? Wheat, which is grown in the UK for animal feed. The project is a joint venture between deep pocketed partners AB Sugar, BP, and DuPont Industrial Biosciences. Thanks to Ethanol Producer Magazine for the details....

Read More

Khosla, KiOR Double Down in Mississippi

When the second quarter ended, drop-in cellulosic biofuels maker KiOR was in the process of ramping up production at its first large-scale (eventually 13 million gal per year) plant in Columbus, Miss. The company told investors that it hoped to double the capacity at the Columbus location, at an estimated cost of $225 million. The company had cash reserves of just under $12 million. But, it had one asset that is incredibly valuable – the backing of venture capitalist Vinod Khosla. Khosla has agreed to fork over $50 million – half of it likely to come from his own personal funds – to seed an investment strategy that may bring in other deep pocketed parties such as an industrial partner or traditional lender. KiOR makes gasoline and diesel (not ethanol) from cellulosic feedstocks (wood) via fermentation. Khosla was there at the company’s beginning – he helped midwife it into a startup in 2007 and invested in it before – and now after – its IPO in June 2011. The company went public at $15 a share in its pre-production, pre-revenue era (it is now trading around $2.50). With the Columbus plant, KiOR is in the very first crop of producers of cellulosic biofuels. Investors love that the company’s output is not subject to blend walls the way ethanol production is. But getting steady-state, high levels of output from a first-of-its-kind facility is pretty much unheard of in the second-gen biofuels industry. And so KiOR is hoping it will produce 1 million gal this year, as it does the start-stop-fix-start thing. That’s why it is interesting that rather than hold out to generate revenue from Columbus I, KiOR plans to use what has been learned already to literally double down on its bet. Interestingly, part of the motivation to build the Columbus II plant is the availability of cheap railroad ties at that location. In the press release Khosla (who owns a majority stake) stands by his company: “While KiOR has faced normal start-up issues at the Columbus I facility, I believe that the Columbus I facility has proven that KiOR’s technology can meet and over time exceed the technology performance metrics of approximately 80 gallons per bone dry ton I expected for 2015, driving toward the ultimate goal of producing 92 gallons of hydrocarbon fuels (or over 150 gallons of ethanol equivalent) per bone dry ton of biomass, particularly given the Company’s continued progress in research and development. I believe that KiOR’s proprietary technology platform is substantially better, and can produce hydrocarbon fuels at lower cost, than any other currently visible biofuels fermentation technology, cellulosic or otherwise, that I am...

Read More

Cool Planet Wraps Up $60 Million Funding Round

Biomass to fuels firm Cool Planet has raised $60 million from venture backers in its fourth round of funding. Until now, two things had made Cool Planet unique in the biomass space – it attracted investment from Google Ventures, and its business model calls for small-scale, modular biorefineries. Since venture backing for cellulosic fuels start-ups has been negligible lately, Cool Planet’s $60 million fund raise gives it a third unusual quality. In some ways, Cool Planet is a bit like Khosla-backed KiOR – it relies on specialty catalysts to transform biomass (i.e. wood chips, agriculture waste) into drop-in, gasoline-like biofuels rather than ethanol like in most cellulosic fuel plants. But Cool Planet sequesters the untransformed bits of biomass into what it calls biochar, which can be used as a soil enhancement in agriculture. Cool Planet did not invent the idea of biochar (which is sort of like charcoal), nor did it invent the idea of using it to boost soil productivity (through water and nutrient retention). But the carbon sequestration that biochar represents allows the company to advertise its fuel as carbon negative. It’s not yet clear if farmers would adopt Cool Planet’s output, however. In fact, the company’s website says it is actively seeking partnerships to get this particular ball rolling. From the outside it is not clear to what degree profitability hinges on the sale of biochar. Having a modular biorefinery sounds like an attractive concept, considering the module could be placed where biomass exists in significant quantities but would not be profitable to ship to a distant, huge biorefinery. Still, these facilities are not tiny; each “station” would produce 10 million gal per year of biofuel. And Cleantech Chemistry has not yet determined how the company plans to get the fuel output from these distributed outposts transported to a point of sale. Cool Planet’s fund raising will be used in part to finalize engineering design for its first commercial facility as well as capital for construction in the Port of Alexandria, La. The company says it will be in operation before the end of 2014. In addition to Google, Cool Planet has backing from North Bridge Venture Partners, Shea Ventures, BP, Energy Technology Ventures, and...

Read More
Learning to Like Natural Gas
Aug15

Learning to Like Natural Gas

This week’s cover story – Seeking Biomass Feedstocks That Can Compete – discusses the competition that natural gas might bring to the young renewable fuels and chemicals industry. [You can also check out the YouTube video about Energy Cane] The story discusses one positive that the rise of natural gas brings to biobased chemical makers – at least those that produce C4 chemicals (i.e. butanediol, butadiene). As the chemical industry swaps petroleum feedstocks for natural gas, their processes will generate a much smaller ratio of C4 chemicals. Firms that rely on those intermediates will seek other sources of C4s. But there are a few other ways that the natural gas story intersects with the renewable industries – some obvious, and some not so obvious. One obvious way – cheaper energy from natural gas may help decrease operating costs at all chemical producers, including ones that use biomass feedstocks. Less obvious – there is a group of renewable companies that use syngas as a feedstock. You know what makes an excellent syngas? Why, that’d be natural gas. Sure, you could gasify plant matter, old tires, construction debris, municipal waste (anything carbon based). Any of those feedstocks will make a flow of carbon monoxide and hydrogen. With chemical or biological catalysts, that syngas can be made into chemicals and fuels. At least two firms that started out with plans to make syngas from biomass or waste sources now say they will ramp up on natural gas – Coskata, and Primus Green Energy. Coskata’s end product is ethanol, while Primus is targeting drop-in hydrocarbons. Presumably, with a working gasifier and catalysts, they could switch feedstocks whenever the cost basis dictates. Newlight Technologies wants to make polymers from waste gases like methane from water treatment plants. But methane from under the ground would work well, too. The company says it can also make polymers from CO2 (with a helping hand from a hydrogen generator). Which brings us to… BASF, which is not really a renewable company, but has got some irons in the fire. The chemical giant has a research project going to rip the hydrogen off of natural gas, and mix that with waste CO2 to make a custom-blended syngas. The firm says getting hydrogen this way is cheaper than other ways (tearing up water molecules, etc). Waste CO2 is something many industries – especially in Europe – would like to do something with. LanzaTech is also in the waste CO2 business. Not sure what its natural gas plans are. Lastly, two stalwarts of the biobased chemicals industry, Genomatica and OPX Bio are getting a handle on natural gas. Genomatica is working...

Read More

EPA’s Magic Number for Cellulosic Biofuels

It’s going to be 6 million gallons. That is how much cellulosic biofuel EPA’s research (crystal ball?) shows will be produced in the U.S. this year, and what fuel blenders, who live by the Renewable Fuels Standard, will have to put in their product. EPA’s final rule on this question was published today. And the text includes a remarkable figure: “From 2007 through the second quarter of 2012 over $3.4 billion was invested in advanced biofuel production companies by venture capitalists alone.” Egads. Anyway, for at least one more year, cellulosic biofuel will be the black-footed ferret of fuel types, which is to say, exceedingly rare. By comparison there will be over 16 billion gal of regular biofuel (like the stuff made from corn and soybeans) this year. The 6 million figure comes from output from two sources – the largest is Kior’s Columbus, MS plant, which is projected to make between 5 or 6 million gal of gasoline and diesel from woody biomass using a special kind of catalytic cracking technology. The remainder will be produced by Ineos Bio (see the below post). I note that the Kior facility’s output is not ethanol and so nicely side-steps the issue of the “blend-wall”, which affects ethanol producers. For 2014, however, the fact that most advanced biofuels are ethanol will cause the EPA some RFS problems. EPA is now saying that there will be changes: EPA does not currently foresee a scenario in which the market could consume enough ethanol sold in blends greater than E10, and/or produce sufficient volumes of non-ethanol biofuels to meet the volumes of total renewable fuel and advanced biofuel as required by statute for 2014. Therefore, EPA anticipates that in the 2014 proposed rule we will propose adjustments to the 2014 volume requirements, including the advanced biofuel and total renewable fuel categories. We expect that in preparing the 2014 proposed rule, EPA will estimate the available supply of cellulosic biofuel and advanced biofuel volumes, assess the ethanol blendwall and current infrastructure and market-based limitations to the consumption of ethanol in gasoline-ethanol blends above E10, and then propose to establish volume requirements that are reasonably attainable in light of these considerations and others as...

Read More
Ineos Bio – First Cellulosic Ethanol Plant in U.S.
Aug01

Ineos Bio – First Cellulosic Ethanol Plant in U.S.

The prize for the first company to get a commercial-scale cellulosic ethanol plant up and running in the U.S. goes to Ineos Bio. Ineos Bio is a Swiss firm, a subsidiary of the chemical company Ineos. The facility is located in Vero Beach, Fla. and has a capacity of 8 million gal of ethanol per year. It also produces 6 MW of renewable biomass power. Vero Beach is on the Eastern coast of the state (a bit more than halfway down), near Port St. Lucie. Folks following cellulosic ethanol might have thought the U.S. would be the first in the world to get a cellulosic ethanol plant, but that distinction goes to Italy, where Beta Renewables owns a 20 million gal per year facility running on wheat straw and giant reed (Arundo donax). The feedstock for the Vero Beach facility is “vegetative and wood waste.”  I’m hoping to learn a bit more about what’s going in there. Because Ineos Bio’s front end process involves gasification, it is likely not terribly picky about the biomass – apparently it has converted vegetative and yard waste, and citrus, oak, pine, and pallet wood waste. Projecting when the cellulosic ethanol industry will really take off has historically been a fools’ errand. But clearly, having two facilities in existence is infinitely more than zero, which is what we had in 2012. You can review my feeble attempt to forecast the 2013 crop of ethanol makers and check out the list of other facilities set to come online...

Read More