Never Mind All That: Solar on the upswing

I’m going to have to start posting more frequently. My last post was about solar firms going bankrupt in China and now my cleantech news is about how solar is set to rebound. Seems like something should have happened in between that post and this one.

Actually, a few biobased chemical deals were announced. Thanks BASF and Evonik!

Stuttgart solar cell project

Making a better solar cell. Credit: University of Stuttgart Institute of Photovoltaics

Anyway – back to solar. Earlier this week, Lux Research (a rather skeptical gang generally) put out a summary of a new research report titled “Solar’s Great Recovery: Photovoltaics Reach $155 Billion Market in 2018.”

Actually, solar had a great 2012 – at last in the U.S. – but that was mainly due to installations of several large utility projects. The business of producing those solar modules had hit some major potholes. Around five years ago, solar demand was hindered by high prices – held up by shortages of key polysilicon raw material, but balanced by huge subsidies in Europe, especially in Spain and Germany. Then – in the nature of boom and bust cycles – the high prices prompted huge polysilicon capacity increases. Then prices fell, Europe cut subsides, the recession hit… and all that new capacity made solar prices tank and inventories piled up. Whew – what a tale.

In a fun new twist, according to Lux analyst Ed Cahill, the solar crisis will become a boon as record low prices boost demand. (And after that what will happen? Stay tuned).

The rise will take place as those cheaper installations (especially utility and commercial rooftop) become routine and spread into new markets. U.S., China, Japan, and India are expected to speed up installations. That will help to power (no pun intended) a compound annual growth rate in the industry of 10.5% over the next three years.

A few other things might help – according to this New York Times article, the U.S. and Europe are both working to smooth over trade disputes with China. Regional pricing schemes may take the place of tariffs. China had been accused of exporting solar modules at prices less than the cost of production (a practice called “dumping”). China, in turn, accused polysilicon makers in the U.S. and Europe of doing the same thing.

All of this fun news is not likely to help revive solar module manufacturing in the U.S. or in Germany. But new technology might. My colleague Alex Scott flagged a news item from the University of Stuttgart’s Institute for Photovoltaics. Researchers there have tested a crystalline silicon solar cell with a 22% sunlight conversion efficiency. It is difficult to say how much a module made of these cells would convert, but a traditional module is normally around 15%.

The secret to the team’s work is a design that puts the metal contacts on the back layer of the cell, using a laser. While hanging out on the back of the cell, the material will not block light hitting the front of the cell. Ta-da! More electrons.

 

 

Author: Melody Bomgardner

Share This Post On