↓ Expand ↓
» About This Blog

Fake Meat as Cleantech Investment

The New York Times today has a fascinating feature about a new crop of businesses developing better-tasting meat substitutes. According to the Times,

Demand for meat alternatives is growing, fueled by trends as varied as increased vegetarianism and concerns over the impact of industrial-scale animal husbandry on the environment. The trend has also attracted a host of unlikely investors, including Biz Stone and Evan Williams of Twitter, Bill Gates and, most recently, Li Ka-shing, the Hong Kong magnate.

It goes on to say that the sustainability boon of veggie-based protein over animal protein has also attracted venture firm Kleiner Perkins Caufield & Byers to the category.

Since I write about cleantech start ups and food, I figure this is an interesting market niche to examine. But my first question reading the story was, would I eat this? That is not very analytical.

The companies featured in the story are Beyond Meat, which makes a veggie protein chicken that apparently is indistinguishable from the real thing in a dish like chicken salad, Gardein, which makes products including – amazingly to me – fake fish, and Hampton Creek, a start up that has developed a versatile and healthy egg substitute made from Canadian yellow peas.

Setting aside my selfish question of whether these products would appeal to me, a non-vegetarian, I’m going to try to set the stage for an analysis of the likely success of these ventures. The companies state they are hoping to attract mainstream eaters. That means they will have to score a win on the three most important qualities for mainstream grocery shoppers: 1) Taste 2) Cost 3) Convenience.

The point of the Times story is that these up and comers are aiming to beat out today’s fake meat brands on taste and texture. Many fake meat products are easier to store and prepare than raw meat, so that’s a plus. That leaves cost – if they can sell the products for just a bit less than the real thing that would make a huge difference and would expand the market for fake meat.

To get the costs down while they scale production, firms like Beyond Meat will first have to appeal to the early adopter/healthy eater/vegan/vegetarian/flexitarian who is willing to try something new.

But while some shoppers may be swayed by sustainability claims, these technology-based firms will have to navigate the growing tide of shoppers of all types who eschew mystery products, high-tech food processing, and food additives such as colors, flavors, preservatives and even texturizers. Shoppers know that even natural flavoring additives may be chemically similar to MSG (particularly flavors derived from yeast). This crowd is likely to be close to a third of shoppers by the time these firms hit the mainstream. Foodies who already shun “highly processed” foods may be wary of high-tech meat substitutes.

What’s more, shoppers who choose fake meat for health reasons only may regress to “sustainably raised” animal products as our nutritional understanding of the effects of various types of fats grows more sophisticated.

But one fact in the article stood out – the current leader in fake meat, MorningStar Farms, has a whopping 60% of the market. This strongly suggests that there is room for a number of new entrants to take a healthy bite of that share. When it comes to food (as opposed to, say, renewable energy) people are very picky, and they like choices.

As for me, I say, bring on the “chicken” wings, the no-egg mayo, the “meat crumbles” chili. I’ll try anything once.

Speaking of picky eaters who are concerned about sustainability, check out this hilarious clip from the IFT show Portlandia:

http://youtu.be/ErRHJlE4PGI

 


Green Business Plan Competition: Start your engines

The ACS Green Chemistry Institute will be hosting a business plan competition on June 18, 2014 at the 18th Annual Green Chemistry and Engineering Conference, which will be held outside of Washington D.C.

The competition is for early stage ideas – but not ideas for renewable energy production or biofuels (there are no shortage of competitions for those). If you have an idea for a green innovation that only chemists would truly understand, this is your chance.

The first deadline to be aware of is April 25 – that’s when to submit your 10-15 slide PowerPoint presentation and optional YouTube video. Just aim to be done by Earth Day and you’ll be right on schedule.

The competition website includes a host of great links to advice on how to communicate and advance your start-up idea. And don’t forget to review (memorize them!) the 12 Principles of Green Chemistry.


Biobased Solvent: Strip paint, clean the oven – without getting dizzy

When you think of a typical “green” cleaner or bio-based surfactant, an image of mild, citrus-scented liquid dish soap might come to mind.

But you wouldn’t use that stuff to clean a year’s worth of burnt grease from your oven or wash the latex paint off your paint brushes. Usually, those kind of tasks call for cleaners that require significant ventilation.

Oven cleaners

Coming soon: Oven cleaners that don’t make you see spots. Credit: Elevance

But thanks to a collaboration between Stepan, a cleaning products ingredient maker, and Elevance, a biobased specialty chemical firm, consumers and professionals will be able to aggressively clean things without seeing stars.

Elevance and Stepan are talking about their first commercial product launched out of the collaboration called Steposol MET-10U. The firms say it can take the place of high pH alkaline degreasers in household cleaners, N-methyl pyrrolidone in adhesive removers, and methylene chloride in paint removers.

The product has a biorenewable carbon index of 75%. It is low VOC, with a boiling point of 297C, and can be used in much lower concentrations than the the solvents it replaces.

How is this done? Basically, Elevance uses olefin metathesis to create specialty building block molecules from waste oils (i.e. from oil palm farming). And those molecules can be very specifically functionalized for different uses, i.e. to create esters for surfactants, lubricants, and personal care products.

Of all the benefits of Steposol, it’s low volatility really makes it a winner, according to Andy Corr, Senior Vice President at Elevance. California has issued strict VOC regulations for many consumer products – for both human health and air quality reasons. Andy points out that even biobased ingredients, such as d-limonene made from citrus peels, can be very volatile.

And Robert Slone, VP of surfactant product development at Stepan, says this is only the first of many outcomes from the partnership, which formed back in 2010. “It is exciting to see the performance that we are able to achieve – chemistry that is much more environmentally responsible, less toxic, non-corrosive, and low VOC than the options that are out there currently.”

 


Help Solve a Water Problem

With blogs, twitter, and e-mail, it’s pretty rare these days that I get a phone call from a reader. But yesterday I heard from an ACS member who has a sort of meta-problem. That is, he hopes to get some outside thinking to help him define his problem, as well as to point him in new directions for possible solutions.

Here’s the problem:

Fresh water is a scarce commodity in many places on the planet. Several dry-arid environments have industrial operations producing excess amounts of water. That water contains excess salts, boron, ammonia, silica, and other minerals. Current operational strategy is to inject the water into below-ground natural reservoir space but that option may be limited in the future. Alternatives to disposal revolve around traditional approaches to recycle or reuse that water but I’m seeking new thinking and brainstorming of even better ways to use, recycle, and/or a novel alternative scenario for the water.

With the drought in California, and the tightening of restrictions for industry’s use of water, this type of problem seems likely to pop up more and more frequently, though the specific quality issues vary from industry to industry.

Please send your thoughts and insights to

peter.vanvoris AT att DOT net 

Or feel free to hash out your thoughts, questions, or ideas in the comments section below. Once the problem has been looked at from several angles and better defined, it may appear on crowdsourcing websites like Innocentive.

 

And if you need a little clean water inspiration, you can read this week’s C&EN story on Beefed-up bacteria that get the lead out of water

Or a 2012 story on Treating Water From Hydraulic Fracturing

Or you can check out the website of Simbol Materials, which is scaling up its technology to mine hydrothermal brines for lithium, manganese, zinc, and potassium.

 


The Biology in Green Chemistry

Yeast, bacteria, enzymes, proteins… may not be what immediately come to mind with the phrase Green Chemistry. But of the 93 teams that have won Presidential Green Chemistry Awards, 31 had technology that hinged on the use of biological processes or biobased inputs, point out the folks at the Biotechnology Industry Association.

BIO has created a cheat sheet of sorts on the various bio-powered technologies behind past award winners, complete with summary blurbs and links to fuller descriptions. And it opens with the famous Twelve Steps, er, Twelve Principles of Green chemistry.

One of my favorites is the 1999 discovery by researchers at Dow AgroSciences of Spinosad, a selective insecticide derived from a soil microbe. It is a very relevant organic pesticide used today. The fun detail, not in the blurb, is that the microbe was found in the environs of a rum distillery. Why a scientist was looking there, in the dirt, is a fun question.

And more recently, a 2013 award went to Richard P. Wool of the University of Delaware who “has created several high-performance materials, such as adhesives and foams, using biobased feedstocks, including vegetable oils, chicken feathers, and flax.” These materials sound not-quite good enough to eat, but certainly quite good enough to sit on.

 

 

 


Selling it: Making chemicals from CO2

Cleantech start-up Liquid Light is hitting the road to market its catalytic technology that takes in CO2 to make chemicals. C&EN science reporter Mitch Jacoby included the company in his July 1 feature about methods to use electrochemistry to convert CO2 to valuable products.

Earlier this week, the company announced that it now has a lab scale prototype and is targeting production of ethylene glycol (MEG – with the M for “mono”). MEG is commonly known to consumers as antifreeze, but the bulk of it is used as an intermediate chemical in the production of polyester and PET resins. Shell Chemicals is a leader in MEG production with its own OMEGA catalytic process.

Liquid Light

The prototype electrochemical cell is coffee-table sized. Credit: Liquid Light

C&EN spoke with Liquid Light’s CEO Kyle Teamey while he was at the airport. Teamey is calling on potential licensees who may be interested in investing in the firm’s next step: a larger, real-world installation to further demonstrate the technology. The firm currently has backing from VantagePoint Capital Partners, BP Ventures, Chrysalix Energy Venture Capital, and Osage University Partners.

The following is a lightly edited Q&A.

CC: What sources and types of CO2 streams are you targeting?

KT: The idea is to use industrial point sources of CO2, ideally one that is located in an existing chemical production area, petrochemical plant, or refinery site. In terms of cost structure, we assume the cost that is associated with using conventional carbon capture technology. Estimates from those technology providers have led us to assume $80 per ton, though it can range wildly between $5-150. We want pipeline grade CO2, relatively pure but not completely squeaky clean.

Still, we have a stable catalyst for making a lot of different chemicals, there are chemicals that can be made with very impure CO2, that includes SOx, NOx, oxygen, CO, and mercury. We’re not going to hook the thing up to a coal fire power plant, but there are opportunities out there.

CC: What would be the source of hydrogen?

KT: Customers would be able to use the lowest cost hydrogen available on market, like from dereforming of methane, or unconventional ones like water electrolysis. Ultimately we want to provide technology for customers to reach whatever goals they have – they could even set up at a remote site to use CO2.

CC: How did you come to lead this effort at Liquid Light?

KT: I was an entrepreneur in residence with a venture capital fund – I came in with the intent on starting this company. I’m more like a utility infielder than a pinch hitter.

CC: Who are you speaking with now to advance the technology, and what kind of reception are you getting as a tech start-up?

KT:There is still a lot of interest from the petrochemical industry in new carbon feedstocks. Particularly something, in the case of CO2, that is low cost. With a captive industrial point source, there is no price volatility of that input.

You can configure the process in such a way that you significantly reduce the carbon footprint of manufacturer, to help hit economic and environmental goals simultaneously. Most manufacturers look at this from an economic standpoint.We have a lot of people excited about the MEG process, other groups are interested in other chemicals aside from MEG. That’s why I’m at the airport this morning.

CC: How big is your lab prototype and what scale are you ultimately targeting?

KT: It’s coffee-table sized. The prototype weighs a lot. Ultimately we would go to world-scale size for the product we are making. With the electrochemical technology, you scale up by stacking. You can make smaller amounts of specialty chemicals or build out for larger market chemicals like MEG.

CC: What is it like to be involved at a start-up at this point in the process?

KT: The opportunity to bring a new chemical feedstock online is lots of fun – there is a lot of excitement. It is still a relatively early-stage company, but from a job perspective, I’ve found nothing is more satisfying than taking something from a concept to a reality. It has been really exciting to watch these things move into beaker scale a few years ago and then to lab scale. And now I can’t wait to get to the next scale.


Stop Saying Indonesia is the Third-largest GHG Emitter

Secretary of State John Kerry’s speech in Indonesia early this week warning about failure to act against climate change attracted a lot of media attention.

Several news outlets, while covering Kerry’s remarks, stated that Indonesia is the third largest emitter of greenhouse gases after the U.S. and China. Both the New York Times and NPR’s News Hour reported this startling claim. It was not part of the Secretary’s statement.

And that’s a good thing, because it appears to be quite wrong. According to data released in October 2013 from the United Nations Framework Convention of Climate Change, Indonesia’s contribution of greenhouse gas is more comparable to that of Italy than to the U.S. or China.

Even when including land-use changes, a stringent measure that significantly increases Indonesia’s output, the archipelago emits fewer tons of GHG than the U.S., China, Russia, Brazil, India, Japan, Germany, Canada, UK, Mexico, and Australia.

So where does the “third-largest” factoid come from, then? From what I can tell, this was an estimate made by the UN back in 2005, shortly after the country ratified the Kyoto protocol. It is not clear how accurate that figure ever was. It’s true that Indonesia is still ranked fairly high considering that it is not a developed country, but in its defense, it is the fourth most populous nation on earth.

Another contributing factor to this claim is likely the many reports about deforestation and other actions in the country to convert land to agricultural uses, such as for palm oil plantations. These land use changes do make a huge contribution to emissions. Concerns about land conversion have driven demand for certified sustainable palm oil.

Still, if we’re going to call out specific countries for their overly-large contributions to climate change, let’s at least get our facts straight.


Big Growth Seen for Biobased Materials and Chemicals

Technologies for – and commercialization of – materials and chemicals made from a variety of biobased feedstocks “have reached an inflection point” and are poised to grow significantly over the next four years, according to the minds over at Lux Research.

Rubber Duck

Just Ducky. Biobased capacity, like for non-phthalate plasticizers, has a bright future

Research analyst Julia Allen says overall capacity will nearly double, reaching 13.2 metric tons in 2017.  Growth rates by segment vary but all are robust, spanning intermediate and specialty chemicals and polymers. The biggest percentage growth, and largest category of production, will be for intermediates like adipic acid and that old fashioned biobased product, lactic acid.

The only fly in the punch mentioned in the press release (full report available to Lux clients) is that cellulosic feedstocks are likely to continue to grow  slowly. Corn starch and sugar cane will still dominate, and oily bio feestocks and waste gas will also play a role.

Here’s a nice example of the biobased industry’s maturation. One of the larger biobased chemical intermediate companies is Myriant, a producer of succinic acid made from sugar. Today the company said it has supplied commercial quantities to downstream customer Oxea for use in production of pthalate-free plasticizers. Oxea is a large-ish intermediates company owned by Oman Oil Company. Applications for the plasticizer include food cling wraps, flooring, soft toys and adhesives & sealants.

Of course, just because the industry as a whole is on surer footing and poised for growth, does not mean the same is true for individual companies. In fact, once the market is in a position to determine demand and pricing, we may see what business reporters politely call “consolidation.”

For instance, Florida-based biobased specialty chemical company LS9 was recently bought by mainstream biodiesel fuel maker Renewable Energy Group for a not-huge price tag. And biobased plastics supplier Cereplast has filed for Chapter 11 bankruptcy just this week.


Rivertop Makes Montana a Magnet

This dispatch from the American Cleaning Institute show is a guest post by Mike McCoy. Thanks Mike!

John Monks is moving to Montana.
That’s one of several changes precipitated by an impending round of funding for Rivertop Renewables, a biobased chemicals company headquartered in Missoula, Mont.

Monks has been Rivertop’s vice president of business development since May 2013. He came to the startup following stints at two larger industrial biotech firms, Genencor and DSM.

Monks and his wife now live in the Chicago area, but the pending infusion of venture capital will put Rivertop on solid financial footing, he says, and prepare it for life as a going commercial operation. Monks needs to be in Missoula to help make it happen.

Rivertop produces chemicals from biomass. What separates it from the firms Monks used to work for is that the conversion is carried out not by fermentation but via a chemical synthesis, in this case a carbohydrate oxidation developed by Donald E. Kiely, a University of Montana emeritus chemistry professor.

Glucaric acid made from glucose is Rivertop’s first product. Monks was at the American Cleaning Institute’s annual meeting in Orlando, Fla., last week to promote the chemical as a raw material for the detergents industry.

Rivertop says glucaric acid is a chelating agent that works almost as well as sodium tripolyphosphate did in laundry detergents and automatic dishwasher detergents. Phosphates were legislated out of U.S. laundry detergents decades ago and out of dishwasher detergents in 2010.

Detergent makers have come up with phosphate replacements, but they tend to be expensive or otherwise flawed. Monks says manufacturers are receptive to the idea of an efficacious and cost-effective alternative.

At present, Rivertop’s glucaric acid is being toll-produced by DTI, a contract manufacturer in Danville, Va., that can turn out about 8 million lb of the chemical per year. Although Monks won’t disclose more about the financing until it is completely nailed down in the next month or two, he does say the additional cash will allow output to increase further. Moreover, it should set Rivertop on a path to build its own commercial-scale glucaric acid facility, likely in cooperation with a partner.

Another thing the cash will do is allow Rivertop to double its workforce in Missoula from the present staff of 18. Monks is looking forward to his move to Montana, but he acknowledges that the location might not appeal to everyone. “Flying in and out of Missoula isn’t the easiest thing to do,” he says.


Taking out the Trash

Where I live, I have to pay for each bag of household waste picked up by the trash man. Each bag gets a sticker, and every so often I purchase a sheet of stickers for a not inconsiderable amount of money.

Abengoa's municipal-waste to biofuel plant in Spain

Abengoa’s municipal-waste to biofuel plant in Spain. Credit: Abengoa

Luckily, I recycle and compost, and so my actual trash output is minimal.

Still, whatever volume of garbage I produce is a liability on the household balance sheet. Meanwhile, in the biobased/renewables economy, any source of unused carbon can be an asset if handled properly. And so I’m a bit surprised that I did not take note of one important cleantech project that came online in 2013: Abengoa‘s municipal solid waste-to-ethanol plant in Salamanca, Spain.

Thanks go to Jim Lane from Biofuels Digest for describing the facility in his Bioeconomy Achievement Awards post. In my defense, I have heard of  and followed the other projects that made his list.

The biofuel facility was inaugurated in June – and judging from the press release I imagine that Abengoa workers are busy adjusting it and scaling it up. It has an eventual capacity to take in 25,000 tons of municipal solid waste and produce about 400,000 gal of ethanol per year. That is a great deal of ethanol – much closer in output to a Midwestern corn ethanol plant than any advanced biofuel plant I’ve come across.

The secondary benefit of course, besides fuel, is that the amount of waste is reduced by 80%, with only the remainder going to a landfill.

In addition to scale, the other striking feature of the plant is that it uses a fermentation and enzymatic hydrolysis process to get at the carbon inside the cellulose and hemicellulose fraction of waste. Other waste to fuels plants (like Enerkem’s in Alberta) use more physical/chemical processes such as gasification or pyrolysis and inorganic catalysts.

Generally the stated benefits of the thermo-chemical routes are that all carbon-based inputs (i.e., old tires, plastics – you name it) are converted. But whether this distinction is important is questionable. For example, even gasification projects require upfront sorting and shredding of trash.

Perhaps someday when I put out my trash, rather than paying for the privilege, I’ll get paid instead.



From The CENtral Science Blogs