Green Business Plan Competition: Start your engines
Mar28

Green Business Plan Competition: Start your engines

The ACS Green Chemistry Institute will be hosting a business plan competition on June 18, 2014 at the 18th Annual Green Chemistry and Engineering Conference, which will be held outside of Washington D.C. The competition is for early stage ideas – but not ideas for renewable energy production or biofuels (there are no shortage of competitions for those). If you have an idea for a green innovation that only chemists would truly understand, this is your chance. The first deadline to be aware of is April 25 – that’s when to submit your 10-15 slide PowerPoint presentation and optional YouTube video. Just aim to be done by Earth Day and you’ll be right on schedule. The competition website includes a host of great links to advice on how to communicate and advance your start-up idea. And don’t forget to review (memorize them!) the 12 Principles of Green...

Read More
Biobased Solvent: Strip paint, clean the oven – without getting dizzy
Mar24

Biobased Solvent: Strip paint, clean the oven – without getting dizzy

When you think of a typical “green” cleaner or bio-based surfactant, an image of mild, citrus-scented liquid dish soap might come to mind. But you wouldn’t use that stuff to clean a year’s worth of burnt grease from your oven or wash the latex paint off your paint brushes. Usually, those kind of tasks call for cleaners that require significant ventilation. But thanks to a collaboration between Stepan, a cleaning products ingredient maker, and Elevance, a biobased specialty chemical firm, consumers and professionals will be able to aggressively clean things without seeing stars. Elevance and Stepan are talking about their first commercial product launched out of the collaboration called Steposol MET-10U. The firms say it can take the place of high pH alkaline degreasers in household cleaners, N-methyl pyrrolidone in adhesive removers, and methylene chloride in paint removers. The product has a biorenewable carbon index of 75%. It is low VOC, with a boiling point of 297C, and can be used in much lower concentrations than the the solvents it replaces. How is this done? Basically, Elevance uses olefin metathesis to create specialty building block molecules from waste oils (i.e. from oil palm farming). And those molecules can be very specifically functionalized for different uses, i.e. to create esters for surfactants, lubricants, and personal care products. Of all the benefits of Steposol, it’s low volatility really makes it a winner, according to Andy Corr, Senior Vice President at Elevance. California has issued strict VOC regulations for many consumer products – for both human health and air quality reasons. Andy points out that even biobased ingredients, such as d-limonene made from citrus peels, can be very volatile. And Robert Slone, VP of surfactant product development at Stepan, says this is only the first of many outcomes from the partnership, which formed back in 2010. “It is exciting to see the performance that we are able to achieve – chemistry that is much more environmentally responsible, less toxic, non-corrosive, and low VOC than the options that are out there currently.”...

Read More
The Biology in Green Chemistry
Mar12

The Biology in Green Chemistry

Yeast, bacteria, enzymes, proteins… may not be what immediately come to mind with the phrase Green Chemistry. But of the 93 teams that have won Presidential Green Chemistry Awards, 31 had technology that hinged on the use of biological processes or biobased inputs, point out the folks at the Biotechnology Industry Association. BIO has created a cheat sheet of sorts on the various bio-powered technologies behind past award winners, complete with summary blurbs and links to fuller descriptions. And it opens with the famous Twelve Steps, er, Twelve Principles of Green chemistry. One of my favorites is the 1999 discovery by researchers at Dow AgroSciences of Spinosad, a selective insecticide derived from a soil microbe. It is a very relevant organic pesticide used today. The fun detail, not in the blurb, is that the microbe was found in the environs of a rum distillery. Why a scientist was looking there, in the dirt, is a fun question. And more recently, a 2013 award went to Richard P. Wool of the University of Delaware who “has created several high-performance materials, such as adhesives and foams, using biobased feedstocks, including vegetable oils, chicken feathers, and flax.” These materials sound not-quite good enough to eat, but certainly quite good enough to sit on.    ...

Read More
Big Companies Binging on Microbes
Dec10

Big Companies Binging on Microbes

Microbes! They are tiny but powerful. And big companies are buying in – according to a wave of announcements that began late last week. Here are some highlights from my inbox. Fuels Amyris, which has long been talking about making biofuels – particularly diesel and jet fuel – from its biobased farnesene, will embark on a joint venture with French fuel company Total. Recently Amryis had pulled back from its fuel ambitions, but now it will move ahead with this 50/50 venture. Total is already an investor in Amyris and owns 18% of the firm’s commons stock. Where’s the microbe? Amyris uses engineered microbes to make farnesene from sugar. Agriculture Meanwhile, Monsanto and Novozymes will combine forces to develop and market biological crop products based on microbes. The deal includes a $300 million payment from Monsanto for access to Novozyme’s technology, which the firm has been building for the last seven years. Microbes have long been used as inoculates for nitrogen-fixing legume plants but in the last few years microbial products have been developed to help with phosophate uptake, to fight fungus and insects, and promote plant vigor and yield. Interestingly, Ag giant Monsanto only last year introduced a microbial platform. This deal sounds like a way to catch up. Biobased chemicals Some microbes can ferment gases and make desirable chemical intermediates. LanzaTech has been an innovator in this space so we’ll start with that company’s new deal with Evonik. The firms have a three-year research agreement to develop a route to biobased ingredients for specialty plastics. The feedstock will be synthesis gas (syngas) derived from waste. LanzaTech has already begun production at an earlier joint venture that produces ethanol from the industrial waste gases of a large steel mill in China. Invista is probably best known for its synthetic fibers business (think Lycra and Coolmax) but it also has a chemical intermediates business. And it now has a deal with the UK Center for Process Innovation to develop gas fermentation technologies for the production of industrial chemicals such as butadiene. The two are eying waste gas from industry as a feedstock. Rather than spin the work as a sustainability play, Invista says it may significantly improve the cost and availability of several chemicals and raw materials that are used to produce its products....

Read More
New Probe Aids Enzyme Mixology for Biofuels
Nov05

New Probe Aids Enzyme Mixology for Biofuels

What’s the difference between a bartender and a biofuels researcher? A bartender uses ethanol to make cocktails, while a biofuels researcher uses cocktails to make ethanol. Researchers at the Department of Energy’s Pacific Northwest National Lab have developed a probe to help create the most efficient cocktails for biofuels makers. A biofuel-making cocktail is a blend of enzymes that break down biomass (like corn stalks). And apparently the fungus Trichoderma reesei is a veritable Swiss Army knife of enzymes.  T.E., as we’ll call it, is a mesophilic soft-rot fungus which was famous in World War II as the stuff that chewed through military tents in the Pacific Theater. It contains 200 sugar molecule busting enzymes (glycoside hydrolases) including 10 that chomp cellulose and 16 that consume hemicellulose. This variety is helpful, because no single enzyme can profitably make ethanol from cellulose. To make biofuels, companies either make or purchase custom blends of enzymes that function at the needed pH, temperature, nutrient environment, and chemical conditions. Companies like Novozymes sell optimized blends of enzymes. But with PNNL’s probes, cocktail DIY’ers can get in on the action. Currently, enzyme assays only show the total mixture activity of all enzymes, not the activity of individual enzymes. But the activity-based probe method quickly identifies and quantifies the activity of individual enzymes in a mixture, allowing high throughput analysis with gel electrophoresis or LC-MS-based proteomics. The research showed that the different processing conditions had a significant impact on the activity of individual enzymes. Armed with this knowledge, an enzyme mixologist would be able to more quickly identify the best ingredients for their biofuels process. Reference [free download with registration at RSC]: Lindsey N. Anderson, David E. Culley, Beth A. Hofstad, Lacie M. Chauvigné-Hines, Erika M. Zink, Samuel O. Purvine, Richard D. Smith, Stephen J. Callister, Jon M. Magnuson and Aaron T. Wright, Activity-based protein profiling of secreted cellulolytic enzyme activity dynamics in Trichoderma reesei QM6a, NG14, and RUT-C30, Molecular BioSystems, Oct. 9, 2013, DOI:...

Read More
Little Green Feedstocks
Nov01

Little Green Feedstocks

It sounds like something from a greenskeeper’s nightmare – certain folks have plans to grow algae and dandelions on purpose, and in large quantities. Firstly, in the golf course-choked state of Florida, Algenol CEO Paul Woods is scouting a location for a $500 million algae-to-fuels plant. The company was founded and has been operating in the southern part of the state for years now. Its claim to fame is cheap ethanol made from cyanobacteria in a custom-designed bioreactor. Woods does not, as far as I know, have plans to re-purpose stagnant water traps for the purpose of growing his feedstock. But Florida, though it is sunny and warm, might have missed out on this slimy opportunity. In recent months, Woods questioned the state’s commitment to biofuels. For example, Governor Rick Scott repealed a state law requiring 10% ethanol in gasoline. But now, according to Fort Myers ABC 7 News, the company has been persuaded to build in its home state – apparently the estimated 1,000 jobs was just the ticket to getting a warmer welcome. Algenol needs to be sited near a major CO2 source (i.e., factory or power plant emissions) and says potential partners have come forward. Meanwhile, it’s called the Russian Dandelion, though it grows in Germany. This common lawn scourge is bringing about not curses, but praise, for its rubber producing capability. Tire makers are enthused about its white latex sap. The goo is expected to give the subtropical rubber tree a bit of competition. Making rubber from dandelions is not a new idea, but has been given new life by a project at the Fraunhofer Institute for Molecular Biology and Applied Ecology. Fraunhofer scientists, in a collaboration with folks from tire firm Continental are working on a production process for making tires from the dandelions. In addition to the manufacturing process, the researchers are also using DNA markers to grow new varieties of the plant with higher rubber yields. The project sounds kind of cute but the researchers behind it are dead serious. The partners have already begun a pilot project and plans are afoot to move to industrial scale. According to them, the first prototype tires made from dandelion rubber will be tested on public roads over the next few years. You can read an earlier post on the history of dandelion rubber...

Read More