↓ Expand ↓

Category → Manufacturing

Fake Meat as Cleantech Investment

The New York Times today has a fascinating feature about a new crop of businesses developing better-tasting meat substitutes. According to the Times,

Demand for meat alternatives is growing, fueled by trends as varied as increased vegetarianism and concerns over the impact of industrial-scale animal husbandry on the environment. The trend has also attracted a host of unlikely investors, including Biz Stone and Evan Williams of Twitter, Bill Gates and, most recently, Li Ka-shing, the Hong Kong magnate.

It goes on to say that the sustainability boon of veggie-based protein over animal protein has also attracted venture firm Kleiner Perkins Caufield & Byers to the category.

Since I write about cleantech start ups and food, I figure this is an interesting market niche to examine. But my first question reading the story was, would I eat this? That is not very analytical.

The companies featured in the story are Beyond Meat, which makes a veggie protein chicken that apparently is indistinguishable from the real thing in a dish like chicken salad, Gardein, which makes products including – amazingly to me – fake fish, and Hampton Creek, a start up that has developed a versatile and healthy egg substitute made from Canadian yellow peas.

Setting aside my selfish question of whether these products would appeal to me, a non-vegetarian, I’m going to try to set the stage for an analysis of the likely success of these ventures. The companies state they are hoping to attract mainstream eaters. That means they will have to score a win on the three most important qualities for mainstream grocery shoppers: 1) Taste 2) Cost 3) Convenience.

The point of the Times story is that these up and comers are aiming to beat out today’s fake meat brands on taste and texture. Many fake meat products are easier to store and prepare than raw meat, so that’s a plus. That leaves cost – if they can sell the products for just a bit less than the real thing that would make a huge difference and would expand the market for fake meat.

To get the costs down while they scale production, firms like Beyond Meat will first have to appeal to the early adopter/healthy eater/vegan/vegetarian/flexitarian who is willing to try something new.

But while some shoppers may be swayed by sustainability claims, these technology-based firms will have to navigate the growing tide of shoppers of all types who eschew mystery products, high-tech food processing, and food additives such as colors, flavors, preservatives and even texturizers. Shoppers know that even natural flavoring additives may be chemically similar to MSG (particularly flavors derived from yeast). This crowd is likely to be close to a third of shoppers by the time these firms hit the mainstream. Foodies who already shun “highly processed” foods may be wary of high-tech meat substitutes.

What’s more, shoppers who choose fake meat for health reasons only may regress to “sustainably raised” animal products as our nutritional understanding of the effects of various types of fats grows more sophisticated.

But one fact in the article stood out – the current leader in fake meat, MorningStar Farms, has a whopping 60% of the market. This strongly suggests that there is room for a number of new entrants to take a healthy bite of that share. When it comes to food (as opposed to, say, renewable energy) people are very picky, and they like choices.

As for me, I say, bring on the “chicken” wings, the no-egg mayo, the “meat crumbles” chili. I’ll try anything once.

Speaking of picky eaters who are concerned about sustainability, check out this hilarious clip from the IFT show Portlandia:

http://youtu.be/ErRHJlE4PGI

 

Help Solve a Water Problem

With blogs, twitter, and e-mail, it’s pretty rare these days that I get a phone call from a reader. But yesterday I heard from an ACS member who has a sort of meta-problem. That is, he hopes to get some outside thinking to help him define his problem, as well as to point him in new directions for possible solutions.

Here’s the problem:

Fresh water is a scarce commodity in many places on the planet. Several dry-arid environments have industrial operations producing excess amounts of water. That water contains excess salts, boron, ammonia, silica, and other minerals. Current operational strategy is to inject the water into below-ground natural reservoir space but that option may be limited in the future. Alternatives to disposal revolve around traditional approaches to recycle or reuse that water but I’m seeking new thinking and brainstorming of even better ways to use, recycle, and/or a novel alternative scenario for the water.

With the drought in California, and the tightening of restrictions for industry’s use of water, this type of problem seems likely to pop up more and more frequently, though the specific quality issues vary from industry to industry.

Please send your thoughts and insights to

peter.vanvoris AT att DOT net 

Or feel free to hash out your thoughts, questions, or ideas in the comments section below. Once the problem has been looked at from several angles and better defined, it may appear on crowdsourcing websites like Innocentive.

 

And if you need a little clean water inspiration, you can read this week’s C&EN story on Beefed-up bacteria that get the lead out of water

Or a 2012 story on Treating Water From Hydraulic Fracturing

Or you can check out the website of Simbol Materials, which is scaling up its technology to mine hydrothermal brines for lithium, manganese, zinc, and potassium.

 

The Biology in Green Chemistry

Yeast, bacteria, enzymes, proteins… may not be what immediately come to mind with the phrase Green Chemistry. But of the 93 teams that have won Presidential Green Chemistry Awards, 31 had technology that hinged on the use of biological processes or biobased inputs, point out the folks at the Biotechnology Industry Association.

BIO has created a cheat sheet of sorts on the various bio-powered technologies behind past award winners, complete with summary blurbs and links to fuller descriptions. And it opens with the famous Twelve Steps, er, Twelve Principles of Green chemistry.

One of my favorites is the 1999 discovery by researchers at Dow AgroSciences of Spinosad, a selective insecticide derived from a soil microbe. It is a very relevant organic pesticide used today. The fun detail, not in the blurb, is that the microbe was found in the environs of a rum distillery. Why a scientist was looking there, in the dirt, is a fun question.

And more recently, a 2013 award went to Richard P. Wool of the University of Delaware who “has created several high-performance materials, such as adhesives and foams, using biobased feedstocks, including vegetable oils, chicken feathers, and flax.” These materials sound not-quite good enough to eat, but certainly quite good enough to sit on.

 

 

 

Big Growth Seen for Biobased Materials and Chemicals

Technologies for – and commercialization of – materials and chemicals made from a variety of biobased feedstocks “have reached an inflection point” and are poised to grow significantly over the next four years, according to the minds over at Lux Research.

Rubber Duck

Just Ducky. Biobased capacity, like for non-phthalate plasticizers, has a bright future

Research analyst Julia Allen says overall capacity will nearly double, reaching 13.2 metric tons in 2017.  Growth rates by segment vary but all are robust, spanning intermediate and specialty chemicals and polymers. The biggest percentage growth, and largest category of production, will be for intermediates like adipic acid and that old fashioned biobased product, lactic acid.

The only fly in the punch mentioned in the press release (full report available to Lux clients) is that cellulosic feedstocks are likely to continue to grow  slowly. Corn starch and sugar cane will still dominate, and oily bio feestocks and waste gas will also play a role.

Here’s a nice example of the biobased industry’s maturation. One of the larger biobased chemical intermediate companies is Myriant, a producer of succinic acid made from sugar. Today the company said it has supplied commercial quantities to downstream customer Oxea for use in production of pthalate-free plasticizers. Oxea is a large-ish intermediates company owned by Oman Oil Company. Applications for the plasticizer include food cling wraps, flooring, soft toys and adhesives & sealants.

Of course, just because the industry as a whole is on surer footing and poised for growth, does not mean the same is true for individual companies. In fact, once the market is in a position to determine demand and pricing, we may see what business reporters politely call “consolidation.”

For instance, Florida-based biobased specialty chemical company LS9 was recently bought by mainstream biodiesel fuel maker Renewable Energy Group for a not-huge price tag. And biobased plastics supplier Cereplast has filed for Chapter 11 bankruptcy just this week.

Big Companies Binging on Microbes

Microbes! They are tiny but powerful. And big companies are buying in – according to a wave of announcements that began late last week. Here are some highlights from my inbox.

Fuels

Amyris in Brazil

Amyris has begun production of biobased farnesene in Brazil

Amyris, which has long been talking about making biofuels – particularly diesel and jet fuel – from its biobased farnesene, will embark on a joint venture with French fuel company Total. Recently Amryis had pulled back from its fuel ambitions, but now it will move ahead with this 50/50 venture. Total is already an investor in Amyris and owns 18% of the firm’s commons stock. Where’s the microbe? Amyris uses engineered microbes to make farnesene from sugar.

Agriculture

Meanwhile, Monsanto and Novozymes will combine forces to develop and market biological crop products based on microbes. The deal includes a $300 million payment from Monsanto for access to Novozyme’s technology, which the firm has been building for the last seven years. Microbes have long been used as inoculates for nitrogen-fixing legume plants but in the last few years microbial products have been developed to help with phosophate uptake, to fight fungus and insects, and promote plant vigor and yield. Interestingly, Ag giant Monsanto only last year introduced a microbial platform. This deal sounds like a way to catch up.

Biobased chemicals

Some microbes can ferment gases and make desirable chemical intermediates. LanzaTech has been an innovator in this space so we’ll start with that company’s new deal with Evonik. The firms have a three-year research agreement to develop a route to biobased ingredients for specialty plastics. The feedstock will be synthesis gas (syngas) derived from waste. LanzaTech has already begun production at an earlier joint venture that produces ethanol from the industrial waste gases of a large steel mill in China.

Invista is probably best known for its synthetic fibers business (think Lycra and Coolmax) but it also has a chemical intermediates business. And it now has a deal with the UK Center for Process Innovation to develop gas fermentation technologies for the production of industrial chemicals such as butadiene. The two are eying waste gas from industry as a feedstock. Rather than spin the work as a sustainability play, Invista says it may significantly improve the cost and availability of several chemicals and raw materials that are used to produce its products.

 

Easy Holiday Shopping for Positive Solar News

The end of 2013 is shaping up to be merry for the solar industry. It’s been a tough few years – as European governments cut back on incentives, inventories of solar panels, cells, and even raw materials started to pile up. But all that is getting sorted out, and a bunch more positive news is starting to point to a happy 2014 and beyond.

Japan solar plant

A 70MW solar installation in Japan’s Kagoshima prefecture.

Demand for solar in China, Japan, the U.S. and even Europe has been strong since the summer. The pull has been felt througout the supply chain, but is not likely to be so strong that solar will become more expensive for end-users.

One sad tale this year has been a trade war between the developed home countries of some solar makers (in Europe and the U.S.) and China. But it looks like the compromise that the EU and China reached in July will stick, says Bloomberg. Perhaps those discussions will serve as a model for U.S.-China relations.

Speaking of the U.S., In October, 12 new solar installations accounted for 504 MW or 72.1 percent of all new electricity capacity last month. For the year, solar’s share is more like 21%. The Earthtechling blog digs into numbers from the Federal Energy Regulatory Commission.

Solar companies are sending positive signals to investors – and company stock has been soaring, points out Dana Blankenhorn at The Street.

At Lux Research, analyst Ed Cahill is taking a longer view. He says that solar will become competitive with natural gas by 2025, or if gas prices are between $4.90 and $9.30 MMBtu, perhaps as early as 2020. Apparently natural gas is a helpmate to solar – because using both together “can accelerate adoption and increase intermittent renewable penetration without expensive infrastructure improvements.”

Cahill says solar will become broadly competitive across the globe and that solar system prices will fall to $1.20 per W, from $1.96 per W in 2030 as modules get more efficient. One trend from the past will continue to dog the solar industry – as countries (and in the U.S., states) change policies, the industry will continue to see ups and downs. [Here's a press release about the report, along with a map]

M&G Paves the Way for Coke’s PlantBottle in China

Cleantech Chemistry thanks C&EN colleague Marc Reisch for contributing this news about biobased chemicals.

M&G Chemicals, a unit of Italy’s Gruppo Mossi & Ghisolfi, plans to build a $500 million biorefinery in China to make ethanol and the polyester raw material mono-ethylene glycol from 1 million metric tons of biomass per year. The facility in Fuyang, Anhui Province, China, will be four times larger than M&G’s recently commissioned Crescentino, Italy-based biorefinery when it is open in 2015.

To be built in a joint venture with minority partner Guozhen Group, a Chinese energy and real estate conglomerate, the Fuyang refinery will use Proesa technology from Beta Renewables, a joint venture partly owned by M&G which is also a polyethylene terephthalate maker.

M&G’s CEO Marco Ghisolfi says the Fuyang refinery “is the first act of a green revolution that M&G Chemicals is bringing to the polyester chain to provide environmental sustainability.” The company’s entry into China will ultimately position it to supply PET to firms such as beverage maker Coca-Cola which have advanced the development of renewably-sourced bottles, among them Coke’s own “PlantBottle.”

Coke currently buys ethanol-based ethylene glycol from India Glycols to make a PET bottle that is nearly 30% biomass derived. To increase feedstock availability, last year Coke formed a partnership with India’s JBF Industries to build a 500,000 metric-ton-per-year bio-ethylene glycol plant in Brazil, also set to open in 2015.

While the JBF plant will use sugarcane and sugarcane-processing waste as feedstock, M&G’s China facility will be based on wheat straw and corn stover. So M&G’s plant has the added virtue of depending on a non-food feedstock source.

But the ethics of using one feedstock crop versus another, or of using biomass versus petrochemical feedstocks, might not matter if consumers don’t care. At the BioPlastek Forum, a conference held in June, Coke, Ford Motor, and yogurt makers Danone and Stonyfield Farm told bioplastic makers that most consumers are unwilling to pay higher costs for bioplastics (C&EN, July 15, page 18).

And while the large M&G and JBF plant may have the economies of scale to drive down bio-based PET costs, they’ll encounter headwinds from petrochemical-based ethylene glycol makers. Lux Research senior analyst Andrew Soare points to the spate of ethylene and derivatives plants planned in the U.S. based on low-cost natural gas. M&G itself, for instance, is building a 1 million metric-ton-per-year PET polymer plant in Corpus Christi, Texas.

However, M&G will be challenged to make cost competitive ethylene glycol in China given the competition expected from U.S. petrochemical producers, Soare says.

Little Green Feedstocks

It sounds like something from a greenskeeper’s nightmare – certain folks have plans to grow algae and dandelions on purpose, and in large quantities.

Algenol's Paul Woods and his cyanobacteria. Credit: Algenol

Algenol’s Paul Woods and his cyanobacteria. Credit: Algenol

Firstly, in the golf course-choked state of Florida, Algenol CEO Paul Woods is scouting a location for a $500 million algae-to-fuels plant. The company was founded and has been operating in the southern part of the state for years now. Its claim to fame is cheap ethanol made from cyanobacteria in a custom-designed bioreactor. Woods does not, as far as I know, have plans to re-purpose stagnant water traps for the purpose of growing his feedstock.

But Florida, though it is sunny and warm, might have missed out on this slimy opportunity. In recent months, Woods questioned the state’s commitment to biofuels. For example, Governor Rick Scott repealed a state law requiring 10% ethanol in gasoline. But now, according to Fort Myers ABC 7 News, the company has been persuaded to build in its home state – apparently the estimated 1,000 jobs was just the ticket to getting a warmer welcome. Algenol needs to be sited near a major CO2 source (i.e., factory or power plant emissions) and says potential partners have come forward.

Meanwhile, it’s called the Russian Dandelion, though it grows in Germany. This common lawn scourge is bringing about not curses, but praise, for its rubber producing capability. Tire makers are enthused about its white latex sap. The goo is expected to give the subtropical rubber tree a bit of competition. Making rubber from dandelions is not a new idea, but has been given new life by a project at the Fraunhofer Institute for Molecular Biology and Applied Ecology.

Russian dandelions, growing in Germany. Credit: Fraunhofer Institute

Russian dandelions, growing in Germany. Credit: Fraunhofer Institute

Fraunhofer scientists, in a collaboration with folks from tire firm Continental are working on a production process for making tires from the dandelions. In addition to the manufacturing process, the researchers are also using DNA markers to grow new varieties of the plant with higher rubber yields.

The project sounds kind of cute but the researchers behind it are dead serious. The partners have already begun a pilot project and plans are afoot to move to industrial scale. According to them, the first prototype tires made from dandelion rubber will be tested on public roads over the next few years.

You can read an earlier post on the history of dandelion rubber here.