↓ Expand ↓

Category → Diabetes/Obesity

Liveblogging First-Time Disclosures of Drug Structures from #ACSNOLA

Bookmark this page now, folks. On Wednesday, April 10, I will be here, liveblogging the public debut of five drug candidates’ structures. The “First Time Disclosures” Session at the ACS National Meeting in New Orleans runs from 2PM-4:55PM Central time. I am not able to conjure up a permalink to the session program, so here’s a screengrab instead.
1:20PM I’m in hall R02, where the session’s set to begin in about 40 minutes. Found a seat with a power outlet nearby, so I’m good to go!
Company: Bristol-Myers Squibb
Meant to treat: cancers including breast, lung, colon, and leukemia
Mode of action: pan-Notch inhibitor
Medicinal chemistry tidbit: The BMS team used an oxidative enolate heterocoupling en route to the candidate– a procedure from Phil Baran’s lab at Scripps Research Institute. JACS 130, 11546
Status in the pipeline: Phase I
Relevant documents: WO 2012/129353
Company: Novartis Institutes for Biomedical Research and Genomics Institute of the Novartis Research Foundation
Meant to treat: melanoma with a specific mutation in B-RAF kinase: V600E
Mode of action: selective mutant B-RAF kinase inhibitor
Status in the pipeline: Phase Ib/II
Relevant documents: WO 2011/023773 ; WO 2011/025927
Company: AstraZeneca
Meant to treat: respiratory diseases, in particular chronic obstructive pulmonary disease
Mode of action: non-steroidal glucocorticoid receptor modulators
Medicinal chemistry tidbit: This compound originated in part from a collaboration with Bayer Pharma.
Status in the pipeline: Phase II
Relevant documents: WO 2011/061527 ; WO 2010/008341 ; WO 2009/142568
Birinapant (formerly known as TL32711)
Company: TetraLogic Pharmaceuticals
Meant to treat: cancer
Mode of action: blocks the inhibitor of apoptosis proteins to reinstate cancer cell death
Status in the pipeline: Phase II
Relevant documents: US 8,283,372
MGL-3196 (previously VIA-3196)
Company: Madrigal Pharmaceuticals, acquired from VIA Pharmaceuticals, licensed from Roche
Meant to treat: high cholesterol/high triglycerides
Mode of action: mimics thyroid hormone, targeted to thyroid hormone receptor beta in the liver
Medicinal chemistry tidbit: this molecule was discovered at Roche’s now-shuttered Nutley site.
Status in the pipeline: completed Phase I trials
Relevant documents: WO 2007/009913 ; WO 2009/037172

And that’s it, folks! Watch the April 22nd issue of C&EN for more on this session.

Heptares solves first X-ray structure of Family B GPCR, but full details not yet public

GPCR family tree

The new structure adds a new section of GPCR space amenable to computer modeling (big blue circle), a space which includes sought-after drug targets. Previously determined GPCR structures, which are all from the same family, are highlighted in small blue and red circles. Image courtesy Heptares

In what might be the year’s biggest molecular teaser, Heptares Therapeutics has announced that it has solved the first X-ray crystal structure of a G-protein coupled receptor in the Family B subclass. The work provides the first structural insights into a protein family that includes sought-after drug targets such as GLP-1 for diabetes and CGRP for migraine.

Largely because of that drug discovery relevance, however, Heptares is choosing to keep its structure somewhat close to the vest. Officials presented views of the structure, of a GPCR called Corticotropin Releasing Factor (CRF-1) receptor, at conferences on Friday and Monday. But Heptares CEO Malcolm Weir says his team has no immediate plans to publish the structure or to deposit coordinates into the repository known as the Protein Data Bank.

The structure, Weir says, is another success for Heptares’ GPCR stabilizing technology, StaR. The technique involves targeted mutations that help to trap a GPCR in a single biologically-relevant state. In the case of CRF-1, Weir says, the stabilized receptor is captured in the “off” state.

The structure itself, which is at a resolution of 3 Ångstroms, has the 7-helix membrane-spanning structure typical of GPCRs. However, CRF-1′s architecture is rather different from receptors in Family A, the only GPCR family for which X-ray structures had been available until now, Weir says. “The overall shape of the receptor looks different, the orientation of the helices looks different, and there are detailed differences within helices that are at analogous positions in Family A receptors,” he says. He notes that there are differences in helices 6 and 7, which undergo important motions during GPCR activation.

“This is an important breakthrough, although fine details of the structure and release of coordinates may still be some time away,” says Monash University’s Patrick Sexton, an expert in Family B GPCRs who was at Friday’s talk. The structure, he says, confirmed researchers’ expectations that the major differences in membrane-spanning helices between Family A and Family B receptors would occur on the extracellular side. “There was a very open and relatively deep extracellular binding pocket, with the receptor having a ‘V’ shaped appearance,” he says. This open pocket likely contributes to medicinal chemists’ difficulties obtaining high affinity small molecule ligands for Family B receptors, he suggests.

That open pocket might be involved in another Family B GPCR mystery, according to Roger Sunahara, also in attendance Friday, who studies GPCRs’ molecular mechanisms at the University of Michigan, Ann Arbor. All Family B GPCRs, including CRF-1, have a large domain at their amino-terminus that contains large portions of their ligand binding sites. That domain was not included in this structure, he says, but “it would appear that deleted globular N-terminal domain would fit quite nicely into the open pocket.”

The CRF-1 receptor is a drug target for depression and anxiety, but at least one CRF antagonist failed to show benefit compared to placebo in a clinical trial. Weir says the impact of the CRF-1 structure for drug discovery will not necessarily be in CRF-1 drug discovery per se, but in the ability to develop relevant computer models of related targets.

It hasn’t been possible to make accurate models of Family B receptors with Family A information, explains Ryan G. Coleman, a postdoctoral fellow at UCSF who develops GPCR models, but who was not in attendance at the talks. Quality models could streamline small molecule drug discovery for the entire family, he explains. Most of the natural ligands for Family B receptors are long peptides, which are notoriously tough to replace with small molecule drugs.

Experts like Coleman will have to wait for some time to learn about the structure for themselves, unless they happened to have a friend in the audience at Heptares’ talks. It’s not unheard of for there to be a gap of several months to two years between a structure’s announcement and publication.

“We’re delighted to have such an informative structure,” Weir says. “It’s very exciting.” He adds says Heptares is progressing toward a structure of the biggest fish in family B, GLP-1, in the “on” state.

Haystack 2011 Year-in-Review

Well, 2011 is in the books, and we here at The Haystack felt nostalgic for all the great chemistry coverage over this past year, both here and farther afield. Let’s hit the high points:

1. HCV Takes Off – New treatments for Hepatitis C have really gained momentum. An amazing race has broken out to bring orally available, non-interferon therapies to market. In October, we saw Roche acquire Anadys for setrobuvir, and then watched Pharmasset’s success with PSI-7977 prompt Gilead’s $11 billion November buyout.  And both these deals came hot on the heels of Merck and Vertex each garnering FDA approval for Victrelis and Incivek, respectively, late last spring.

2. Employment Outlook: Mixed – The Haystack brought bad employment tidings a few times in 2011, as Lisa reported. The “patent cliff” faced by blockbuster drugs, combined with relatively sparse pharma pipelines, had companies tightening their belts more than normal. Traffic also increased for Chemjobber Daily Pump Trap updates, which cover current job openings for chemists of all stripes. The highlight, though, might be his Layoff Project.  He collects oral histories from those who’ve lost their jobs over the past few years due to the pervasive recession and (slowly) recovering US economy.. The result is a touching, direct, and sometimes painful collection of stories from scientists trying to reconstruct their careers, enduring salary cuts, moves, and emotional battles just to get back to work.

3. For Cancer, Targeted Therapies – It’s also been quite a year for targeted cancer drugs. A small subset of myeloma patients (those with a rare mutation) gained hope from vemurafenib approval. This molecule, developed initially by Plexxikon and later by Roche / Daiichi Sankyo, represents the first success of fragment-based lead discovery, where a chunk of the core structure is built up into a drug with help from computer screening.From Ariad’s promising  ponatinib P2 data for chronic myeloid leukemia, to Novartis’s Afinitor working in combination with aromasin to combat resistant breast cancer. Lisa became ‘xcited for Xalkori, a protein-driven lung cancer therapeutic from Pfizer. Researchers at Stanford Medical School used GLUT1 inhibitors to starve renal carcinomas of precious glucose, Genentech pushed ahead MEK-P31K inhibitor combinations for resistant tumors, and Incyte’s new drug Jakifi (ruxolitinib), a Janus kinase inhibitor, gave hope to those suffering from the rare blood cancer myelofibrosis.

4. Sirtuins, and “Stuff I Won’t Work With  – Over at In the Pipeline, Derek continued to chase high-profile pharma stories. We wanted to especially mention his Sirtris / GSK coverage (we had touched on this issue in Dec 2010). He kept up with the “sirtuin saga” throughout 2011, from trouble with duplicating life extension in model organisms to the Science wrap-up at years’ end. Derek also left us with a tantalizing tidbit for 2012 – the long-awaited “Things I Won’t Work With” book may finally be coming out!

5. Active Antibacterial Development – In the middle of 2011, several high-profile and deadly bacterial infections (Germany, Colorado, among others) shined a spotlight on those companies developing novel antibacterials. We explored front -line antibiotics for nasty Gram-negative E.coli, saw FDA approval for Optimer’s new drug Fidiclir (fidaxomicin) show promise against C. difficile  and watched Anacor’s boron-based therapeutics advance into clinical testing for acne, and a multi-year BARDA grant awarded to GSK and Anacor to develop antibacterials against bioterrorism microorganisms like Y. pestis.

6. Obesity, Diabetes, and IBS – Drugs for metabolic disorders have been well-represented in Haystack coverage since 2010. Both Carmen and See Arr Oh explored the vagaries of Zafgen’s ZGN-433 structure, as the Contrave failure threatened to sink obesity drug development around the industry. Diabetes drugs tackled some novel mechanisms and moved a lot of therapies forward, such as Pfizer’s SGLT2 inhibitors, and Takeda’s pancreatic GPCR agonist. Ironwood and Forest, meanwhile, scored an NDA for their macrocyclic peptide drug, linaclotide.

7. The Medicine Show: Pharma’s Creativity Conundrum – In this piece from October, after Steve Jobs’ passing, Forbes columnist Matt Herper both eulogizes Jobs and confronts a real ideological break between computer designers and drug developers. His emphasis? In biology and medical fields, “magical thinking” does not always fix situations as it might in computer development.

We hope you’ve enjoyed wading through the dense forest of drug development with Carmen, Aaron, Lisa, and See Arr Oh this past year. We here at The Haystack wish you a prosperous and healthy 2012, and we invite you to come back for more posts in the New Year!

HCV Followup: Anadys Acquired for Active Antiviral

It’s been a busy six months for new Hepatitis C (HCV) meds: first, Merck and Vertex have their drugs approved in May, and then Pharmasset leaks PSI-7977 clinical data. Now, Anadys Pharmaceuticals has just announced Phase IIb results for its clinical candidate setrobuvir (ANA-598). The pill lowered virus levels to undetectable limits in 78% of patients after 12 weeks of combination treatment with either ribavirin or pegylated interferon. Anadys notes only one major side effect, a rash occurring in 1/3 of the ‘598-treated patients. The therapy targets patients in tough-to-treat HCV genotype 1 (gen1), unlike PSI-7977, which targets gen2 and gen3.

The data seems to have convinced Roche, which acquired Anadys last Monday in all-cash deal analysts say represented a 260% premium over Anadys’s Friday stock closing price. Roche, no stranger to the HCV battle, hopes to integrate setrobuvir into a potential oral drug cocktail with its current suite of polymerase and protease inhibitors.

Setrobuvir interacts with N5SB polymerase at the allosteric “palm” binding site, located in the center of the baseball-mitt shaped enzyme. The drug’s sulfur-nitrogen heterocycle – a benzothiadiazine – is the key to virus inhibition; Anadys has installed the motif in all their HCV inhibitors, going back to their 2005 patents.

Chemists have known about the virus-targeting properties of this heterocycle for a while, but most derivatives have been culled in pre-clinical testing (see J. Antimicrob. Chemoth. 2004, 54, 14-16 for a brief review). Interestingly, chemists initially prepared benzodiathiazines, such as those in Merck’s chlorothiazide (c. 1957, according to the Merck Index), as diuretics, which found use in diabetic treatment. Over the next 40 years, modified medicines treated conditions ranging from epilepsy and cognitive therapy to hypertension and transcriptase regulation. Tweaked benzodiathiazines first showed anti-HIV and anti-CMV activity in the mid-1990s.

One final advantageous wrinkle in this structure: unlike PSI-7977, setrobuvir is not nucleoside-derived. This feature changes its binding behavior, pharmacokinetics, and even its intellectual property strategies, since many current antiviral therapies mimic the nucleosides found in RNA and DNA chains.


Takeda’s Diabetes Drug Candidate TAK-875 In Phase III Trials

Takeda Pharmaceutical today announced it has begun Phase III clinical trials of TAK-875, a first-in-class drug candidate for treating type 2 diabetes. The experimental therapy activates GPR40, a G-protein-coupled receptor that resides in pacreatic islet cells.

The TAK-875 story is as much about the biology of the target as it is about the molecule itself. And it’s a story that owes much to the company’s willingness to delve into uncharted territory.

In the early 2000s, scientists knew GPR40 existed, but didn’t know what GPR40′s purpose was in the body. Plenty of proteins fit this description– they’re called “orphan receptors” in the industry parlance. Much of Takeda’s drug discovery strategy is based on figuring out what orphan receptors do.

In a 2003 paper in Nature (DOI: 10.1038/nature01478), Takeda laid out what it learned about GPR40. The receptor responds to a variety of long-chain fatty acids. In response to fatty acid binding, GPR40 activates and boosts insulin secretion from pancreatic beta cells.

GPR40 became a viable drug target for Takeda for several reasons. First, one of the hallmarks of type 2 diabetes is a reduction in insulin secretion from pancreatic beta cells, something GPR40 activation could help counter. Second, G-protein-coupled receptors are established drug targets– and GPR40 happens to be in the class of GPCRs for which researchers know the most about structure– the Class A, or rhodopsin-like, GPCRs. (Note: other GPR-type receptors are diabetes targets as well– C&EN contributing editor Aaron Rowe has written about Arena Pharmaceuticals’ activators of GPR119 as diabetes drug candidates.)

TAK-875 docked to a model of GPR40 (ACS Med. Chem. Lett.)

Takeda used structural knowledge to its advantage in the discovery of TAK-875 (ACS Med. Chem. Lett., DOI: 10.1021/ml1000855). Researchers were able to build a model of GPR40 based on its similarity to GPCRs of known structure, and dock potential drug candidates inside to see how well they could bind.

This is far from the only drug discovery story that has to do with “de-orphanizing” orphan receptors. In fact, as far back as 1997, pharmaceutical company researchers were writing about orphan receptors as a neglected drug discovery opportunity (Trends Pharmacol. Sci., DOI: 10.1016/S0165-6147(97)90676-3). And of course, just because researchers have “de-orphanized” a receptor doesn’t mean all of the complex biology is pinned down. Case in point: the PPAR receptors (J. Med. Chem., DOI: 10.1021/jm990554g). Despite these receptors’ promise as targets for obesity and diabetes, drugs designed to target them have tanked in development or had unexpected problems after arrival on the market (read: Avandia).

So as TAK-875 enters Phase III trials, the news might be about the drug candidate’s clinical performance, but you can be sure that Takeda’s researchers are still working hard to unravel as much of GPR40′s basic biology as they can behind the scenes.

BMS-AstraZeneca Dapagliflozin Diabetes Drug Falls Short; Pfizer’s Answer on the Horizon?

As reported by Nature News and Forbes’ The Medicine Show  on July 20, dapagliflozin, a BMS-developed diabetes drug marketed with partner AstraZeneca, was given a “thumbs-down” by an FDA review panel on July 19. After the 9-6 final vote, panel members commented favorably on the drug’s new mechanism, but evidently felt that the safety profile could not be overlooked: the FDA committee meeting statement mentions increased risk of breast and bladder cancer, increased genital infections, and perhaps most seriously, potential for drug-induced liver injury (DILI).

Dapagliflozin has been one of the rising stars of the new class of Sodium-Glucose cotransporter 2 (SGLT2) inhibitors for diabetes treatment, whose development roster includes Johnson & Johnson, Astellas, Boehringer Ingelheim, Roche, GSK, and Lexicon (Note: see Nat. Rev. Drug Disc. 2010, 551 for a full recap).  The excitement behind these drugs comes from a relatively new idea for diabetes treatment: inhibition of the SGLT2 enzyme stops the kidney from reabsorbing sugar, leading to excretion of the excess glucose in the urine, which in turn lowers blood sugar. Dapagliflozin, like most SGLT2 inhibitors, is a glucose molecule with a large aromatic group attached to the carbon atom in the spot chemists call the anomeric position. Such so-called C-glycosides are thought to have improved staying power in the bloodstream relative to O-glycosides (where the linkage point is at an oxygen atom, a more common scenario in sugars), since they are less susceptible to enzymatic breakdown.

So, how do you improve these compounds? A paper Pfizer published last March (J. Med. Chem. 2011, 2952) may offer some hope.   Continue reading →

The Tail’s The Thing – Alkylamine Ethers and Zafgen’s ZGN-433

While posting about the Zafgen obesity drug candidate yesterday, I was staring at the Markush structure we’d drawn for ZGN-433 when Carmen Drahl sent over a 2008 volume of the World Health Organization International Nonproprietary Names (INN) list, a collection of proposed or recommended non-proprietary names and structures for currently-marketed drugs or drug candidates in clinical trials. I glanced down the list to find beloranib, the common name for ZGN-433, and I realized immediately . . . it had the “tail!”

The “tail” nickname should probably be called an (N,N-dimethylamino)ethyl ether functional group. It’s one of the specific atomic arrangements medicinal chemists tack onto lead molecules to improve potency, resist metabolic oxidation, etc. This is one of the more popular groups, it seems, perhaps what someone in catalysis or biochemistry might call a “privileged structure,” a molecular motif that so perfectly accomplishes a given task that it pops up in many different places.

Marketed drugs that riff on this pharmacophore include: Tamoxifen (breast cancer), Benadryl (aka diphenylhydramine, an antihistamine), Dimazole (antifungal), Amiodarone (antiarrhythmic), Gallamine (muscle relaxant), and Evista (estrogen uptake modulator). In Nefopam (an analgesic), the motif is even found embedded in an 8-membered ring, admittedly not the first thing one might think to synthesize – it’s usually harder to make these “medium-ring” compounds  than their 5- or 6-membered counterparts.

In the case of beloranib, one could imagine three roles for the alkylamine ether group. It could serve as an isostere, a group that mimics the space-filling and electronic properties of another, standing in for amino-alkyl side chains found in bioactive plant metabolites like psilocybin or tryptamine. It might also be useful to increase solubility of the drug, which makes dosing easier and improves the drug’s ability to reach the bloodstream when taken orally (Note: this may not have worked for beloranib, since the drug is currently administered by sub-Q injection). A more likely explanation might be the well-established phenomenon of “tuned” basic nitrogens that hydrogen bond with acidic residues in enzyme active sites, increasing binding free energy (better inhibition) – see this 1982 paper by John Katzenellenbogen (U.Illinois) for basicity tuning in Tamoxifen analogues.

We hope Haystack readers will weigh in on what they think the “tail” is accomplishing for ZGN-433. Yesterday’s Zafgen post has already generated some thoughtful commentary via Twitter from John LaMattina, former Senior Vice President, Pfizer Inc and President, Pfizer Global Research and Development:

John_LaMattina: @lisamjarvis Hard to get excited about a compund that acts by a mystery mech. with epoxide moieties. FDA will justifably want long-term tox.

We here at the Haystack would like to thank Dr. LaMattina for his input.