↓ Expand ↓

Category → Clinical Trials

AstraZeneca to Shed 2,200 R&D Jobs

AstraZeneca wielded a heavy ax to its workforce today as it prepares for tougher times ahead. The British-Swedish drugmaker is chopping 7,300 jobs, including 2,200 R&D positions, in hopes of achieving $1.6 billion in annual cost savings by 2014.

This is the third round of major cutbacks at AstraZeneca. In 2010, the company announced plans to slash 8,000 jobs over four years, a move that added to the elimination of 15,000 jobs between 2007 and 2009. This specific round girds against an onslaught of generic competition for key products and accounts for several disappointments in the company’s late-stage pipeline. In the coming months, the company will lose patent protection in various markets for the anti-psychotic Seroquel IR, the anti-cholesterol drug Crestor, and the blood thinner Atacand. Meanwhile, AstraZeneca’s late-stage pipeline has faltered. The recent setbacks (adding to earlier ones) include ending development of the PARP inhibitor olaparib, which prompted it to take a $285 million charge; a failed Phase III trial for the antidepressant TC-5214; and a thumbs down from FDA last month for dapagliflozin, a Type II diabetes drug being developed with Bristol-Myers Squibb.

R&D has taken a heavy hit in each round of cuts. During the Q&A session following AstraZeneca’s earnings presentation, one analyst said his back of the envelope calculations suggest the company will have shed 7,600 R&D jobs between 2006 and 2014. Based on comments by AstraZeneca’s R&D chief Martin Mackay, small molecule research has born the brunt of those cuts. He noted that headcount in biologics research has grown, and pointed out that biologics now account for 40% of the company’s early-stage pipeline (candidates in studies earlier than Phase II), up from 15-20% in recent years.

The latest R&D revamp will be primarily focused on AstraZeneca’s neuroscience activities, where the risk of investment is seen as particularly high. “It’s a really tough area,” Mackay said.  “The industry hasn’t produced enough and we haven’t produced enough.”

The challenge was highlighted in November, when TC-5214, an anti-depressant being developed by Targacept and AstraZeneca, failed to show benefit in a Phase III trial. The bad news came as a surprise, as TC-5214 had demonstrated strong efficacy in smaller trials. Three other Phase III trials are underway, but analysts are skeptical that the program can be salvaged. “Prospects appear grim,” Leerink Swann analyst Joshua Schimmer said in a note last month.

AstraZeneca is creating a small team of 40 to 50 scientists that will work with external partners in academia and industry to discover and develop neuroscience drugs. The adoption of this new strategy means that the company’s Montreal R&D facility will be shuttered, and it will end R&D at its Södertälje site in Sweden.

AstraZeneca’s overhaul of its neuroscience activities is the latest in what appears to be a big pharma exodus from internal central nervous system R&D. In December, Novartis said it would close its neuroscience research facility in Basel, Switzerland, and GlaxoSmithKline two years ago decided to end research in certain central nervous system areas, such as depression and pain.

The HCV Combo Race Just Got Hotter

BMS is shelling out $2.5 billion dollars for Inhibitex, a small pharma company with a Phase II molecule for treatment of Hepatitis C (HCV). The deal adds to the scramble for HCV assets in recent months, with Gilead agreeing to pay almost $11 billion for Pharmasset in November, and Roche’s recent purchase of Anadys. While much has been written about the merits (and price tags) of each deal, the Haystack thought it was worth taking a closer look at the chemical composition of the multi-million dollar molecules.

So what did BMS get for their money?

INX-089, Inhibitex’s lead molecule, has a common antiviral motif: a nucleoside core (the 5-membered ring sugar attached to a nitrogen heterocycle) with an amino acid based prodrug hanging off the left-hand side. Clinically-tested antivirals sharing this basic setup include IDX-184 and NM-283, both from Idenix, and PSI-352938, from Pharmasset  (For an overview of the varied structures currently in development for HCV, see Lisa’s 2010 C&EN story).

INX-089 bears a close resemblance to Pharmasset’s lead nucleotide inhibitor PSI-7977. That’s not a mistake, believes ‘089 discoverer Chris McGuigan, of the Welsh School of Pharmacy. In a recent article (J. Med. Chem. 2010, 53, 4949), McGuigan himself comments “The Pharmasset nucleoside [is] rather parallel to our early work on anti-HIV ProTides.”

Wait, what are ProTides?

Both INX-089 and PSI-7977 aren’t themselves the active viral inhibitor, but phosphoramidate “ProTide” prodrugs: compounds broken down by the body into the active drug (Chem Note: PSI-7977 has single-enantiomer Sp chirality at phosphorus, while INX-189 is a mixture of diastereomers).

Once in the body, enzymes cleave the phosphoramidate group to a phosphate (PO42-). Kinases attach two more phosphate groups, and viruses let this dressed-up molecule inside, where the nucleotide warhead inhibits HCV by interfering with RNA replication (Antimicrob. Agents Chemother. 2011, 55, 1843).

A few comments on the drug itself: The similarity of the ProTide portion (left-hand side) of the molecule to PSI-7977 really is striking: swap in an isobutyl ester and a phenyl, and it’s the same beast! The more interesting switch comes on the upper-right (“eastern”) part of the structure: a protected guanosine ring. This ring harks back to guanine, one of the four common nucleic acids found in DNA.

Source: J. Med. Chem., Pharmasset

PSI-7977, meanwhile, shows off a uracil, a nucleic acid found in RNA, not DNA.

Although it’s tempting to think such similar compounds all dock into the NS5B polymerase at the active site (in the yellow “palm” of the hand-shaped enzyme), don’t be too sure – a recent paper by Pharmasset scientists (J. Med. Chem. 2012, Just Accepted) shows quite a few “Finger,” “Palm,” and “Thumb” sites.  It’s not yet clear whether all nucleoside drugs bind to the active site in the same way. The authors also remark that, due to fast replication and mutation, potentially resistant strains of HCV pop up daily.

ARIAD Presents PACE Data; Provides Potential Gleevec Backup

Sufferers of chronic myeloid leukemia (CML), a rare and tough-to-treat blood cancer, received some good news at the 2011 Americanponatinib Society of Hematology meeting in San Diego this week. On Monday, ARIAD Pharmaceuticals disclosed new results from the Phase 2 PACE trial of its lead drug ponatinib (AP24534). The data (covered by FierceBiotech, Xconomy, and TheStreet), indicate major responses to the drug in ~40% of recipients, even in advanced or refractory (resistant to treatment) CML .

With these numbers in hand, ARIAD enters a tight race, already populated by headliners like Gleevec (imatinib), which in 2001 made a splash as a first-line CML therapy. Drugs such as Gleevec and ponatinib belong to the family of tyrosine kinase (TK) inhibitors, which dock with a mutated protein called Bcr-Abl. This protein (actually a fusion of two distinct proteins via a chromosomal mishap) triggers disease by accelerating blood cell creation, leading to uncontrolled growth and eventually CML.

imatinibSince cancers constantly evolve, new mutations in the TK active site had rendered Gleevec ineffective for certain variations of CML. Many of the PACE trial patients had previously tried newer TK inhibitors, such as Sprycel (dasatinib, BMS) and Tasigna (nilotinib, Novartis), and found that their CML had become resistant due to a single amino acid mutation in the kinase active site, which swapped a polar residue (threonine) for a carbon chain (isoleucine). So, ARIAD chemists decided to develop a drug that borrowed the best points from the earlier therapies, but capitalized on this mutation (A pertinent review in Nature Chemical Biology covers early examples of “personalized” cancer drugs developed for disease variants).

So, how did they accomplish this particular act of molecular kung-fu?  For that, we hit up the literature and go all the way back to . . . 2010. As explained in a development round-up (J. Med. Chem., 2010, 53, 4701), most approved Bcr-Abl inhibitors share several traits: densely-packed nitrogen heterocycles linked to a toluyl (methyl-phenyl) amide, then a highly polar end group, such as piperazine or imidazole. Since the mutation axed a threonine residue, the hydrogen-bond donor adjacent to the ring in earlier drugs was no longer necessary. So, chemists replaced it with a vinyl group.

A computer analysis designed to achieve better binding and drug-like properties suggested an alkyne linker might fit into the mutated active site even better than a vinyl group, so that’s ultimately what ARIAD installed. The program also suggested moving an exocyclic amino group into the aromatic (forming an uncommon imiadzo-[1,2-b]-pyridazine, green in picture). Borrowing the best stuff from other therapies, ARIAD’s chemists also wove in the “flipped” amide and -CF3 motifs (both blue) from nilotinib, as well as the methylpiperazine (red) from imatinib.Binding overlay

With computational rendering (Cancer Cell, 2009, 16, 401) ARIAD scientists could overlay both imatinib and ponatinib in the mutated enzyme’s active site (see picture, right). Notice that unlike imatinib, ponatinib avoids bumping into isoleucine 315. Ponatinib also gets a little extra binding oomph by poking its CF3 group into a hydrophobic pocket near the bottom of the active site.

Juan Enriquez Eviscerates the FDA

In this lecture, tech investor Juan Enriquez explains how the FDA’s extreme risk aversion hurts us, and why that behavior is our fault.

Biogen Idec Reveals Clinical Data for (Really) Small Oral MS Drug BG-12

Biogen Idec made a splash last week when its oral medication for multiple sclerosis (MS), BG-12, was found to reduce relapses in 44-53% of nearly 3,800 patients in two separate Phase 3 clinical trials (CONFIRM and DEFINE, respectively). Continued hopes for an orally available, non-injectable MS treatment have created a race between Biogen Idec and several other firms, as C&EN’s Lisa Jarvis examines in a 2009 MS cover story. In fact, so much has changed in 2 years that two of the six Phase 3 drugs mentioned in that article – Teva’s laquinimod and Merck’s cladribine – have already been withdrawn from competition.

So what’s the secret sauce behind BG-12? Many pharmaceuticals are small molecules with multiple heteroatoms and aromatic rings, but not BG-12: it’s just dimethyl fumarate! A search for ‘fumarate’ on pubs.acs.org returned >4800 hits, which gives you an idea of its common use in several organic reactions: [3+2] cycloadditions, Diels-Alder reactions, and Michael additions. Interestingly, dimethyl fumarate is the all-E stereoisomer; the Z-configuration, where the two esters are on the same side of the central double bond, goes by the tagline ‘dimethyl maleate’ and does not seem to possess anti-MS effects.

Very small molecules such as BG-12 (molecular weight = 144) are notoriously tough to use as drugs: they hit lots of enzymatic targets, not just the intended ones, and tend to have unpredictable side effects (see Derek Lowe’s 2005 article regarding the FDA “approvability” of several common drugs today). Toss in BG-12’s alkylating behavior to boot (fumarates can interact with nucleophilic amines or sulfides at multiple sites, including enzyme active sites), and you have to wonder how it functions in the body. Well, so do scientists. A 2011 review implicates up to 3 potential biochemical mechanisms – the Nrf2 pathway Lisa mentioned in the 2009 piece, T-helper phenotype 2 interleukin upregulation (IL-4, IL-10, IL-5, which “change gears” for immune system functioning), and CD62E inhibition, which controls adhesion of blood cells to inflammation sites.

Side notes: Flavoring chemists have added fumaric acid, the parent diacid of BG-12, to industrially-prepared foodstuffs such as baking powder and fruit juices since the 1930s. A darker side of dimethyl fumarate emerges when you consider its non-medicinal use: certain furniture companies applied it to new upholstered chairs and sofas to stop mold growth. This unfortunately caused several cases of severe skin irritation, which a 2008 exposé in London’s Daily Mail likened to actual burns.


HCV Followup: Anadys Acquired for Active Antiviral

It’s been a busy six months for new Hepatitis C (HCV) meds: first, Merck and Vertex have their drugs approved in May, and then Pharmasset leaks PSI-7977 clinical data. Now, Anadys Pharmaceuticals has just announced Phase IIb results for its clinical candidate setrobuvir (ANA-598). The pill lowered virus levels to undetectable limits in 78% of patients after 12 weeks of combination treatment with either ribavirin or pegylated interferon. Anadys notes only one major side effect, a rash occurring in 1/3 of the ‘598-treated patients. The therapy targets patients in tough-to-treat HCV genotype 1 (gen1), unlike PSI-7977, which targets gen2 and gen3.

The data seems to have convinced Roche, which acquired Anadys last Monday in all-cash deal analysts say represented a 260% premium over Anadys’s Friday stock closing price. Roche, no stranger to the HCV battle, hopes to integrate setrobuvir into a potential oral drug cocktail with its current suite of polymerase and protease inhibitors.

Setrobuvir interacts with N5SB polymerase at the allosteric “palm” binding site, located in the center of the baseball-mitt shaped enzyme. The drug’s sulfur-nitrogen heterocycle – a benzothiadiazine – is the key to virus inhibition; Anadys has installed the motif in all their HCV inhibitors, going back to their 2005 patents.

Chemists have known about the virus-targeting properties of this heterocycle for a while, but most derivatives have been culled in pre-clinical testing (see J. Antimicrob. Chemoth. 2004, 54, 14-16 for a brief review). Interestingly, chemists initially prepared benzodiathiazines, such as those in Merck’s chlorothiazide (c. 1957, according to the Merck Index), as diuretics, which found use in diabetic treatment. Over the next 40 years, modified medicines treated conditions ranging from epilepsy and cognitive therapy to hypertension and transcriptase regulation. Tweaked benzodiathiazines first showed anti-HIV and anti-CMV activity in the mid-1990s.

One final advantageous wrinkle in this structure: unlike PSI-7977, setrobuvir is not nucleoside-derived. This feature changes its binding behavior, pharmacokinetics, and even its intellectual property strategies, since many current antiviral therapies mimic the nucleosides found in RNA and DNA chains.


Takeda’s Diabetes Drug Candidate TAK-875 In Phase III Trials

Takeda Pharmaceutical today announced it has begun Phase III clinical trials of TAK-875, a first-in-class drug candidate for treating type 2 diabetes. The experimental therapy activates GPR40, a G-protein-coupled receptor that resides in pacreatic islet cells.

The TAK-875 story is as much about the biology of the target as it is about the molecule itself. And it’s a story that owes much to the company’s willingness to delve into uncharted territory.

In the early 2000s, scientists knew GPR40 existed, but didn’t know what GPR40′s purpose was in the body. Plenty of proteins fit this description– they’re called “orphan receptors” in the industry parlance. Much of Takeda’s drug discovery strategy is based on figuring out what orphan receptors do.

In a 2003 paper in Nature (DOI: 10.1038/nature01478), Takeda laid out what it learned about GPR40. The receptor responds to a variety of long-chain fatty acids. In response to fatty acid binding, GPR40 activates and boosts insulin secretion from pancreatic beta cells.

GPR40 became a viable drug target for Takeda for several reasons. First, one of the hallmarks of type 2 diabetes is a reduction in insulin secretion from pancreatic beta cells, something GPR40 activation could help counter. Second, G-protein-coupled receptors are established drug targets– and GPR40 happens to be in the class of GPCRs for which researchers know the most about structure– the Class A, or rhodopsin-like, GPCRs. (Note: other GPR-type receptors are diabetes targets as well– C&EN contributing editor Aaron Rowe has written about Arena Pharmaceuticals’ activators of GPR119 as diabetes drug candidates.)

TAK-875 docked to a model of GPR40 (ACS Med. Chem. Lett.)

Takeda used structural knowledge to its advantage in the discovery of TAK-875 (ACS Med. Chem. Lett., DOI: 10.1021/ml1000855). Researchers were able to build a model of GPR40 based on its similarity to GPCRs of known structure, and dock potential drug candidates inside to see how well they could bind.

This is far from the only drug discovery story that has to do with “de-orphanizing” orphan receptors. In fact, as far back as 1997, pharmaceutical company researchers were writing about orphan receptors as a neglected drug discovery opportunity (Trends Pharmacol. Sci., DOI: 10.1016/S0165-6147(97)90676-3). And of course, just because researchers have “de-orphanized” a receptor doesn’t mean all of the complex biology is pinned down. Case in point: the PPAR receptors (J. Med. Chem., DOI: 10.1021/jm990554g). Despite these receptors’ promise as targets for obesity and diabetes, drugs designed to target them have tanked in development or had unexpected problems after arrival on the market (read: Avandia).

So as TAK-875 enters Phase III trials, the news might be about the drug candidate’s clinical performance, but you can be sure that Takeda’s researchers are still working hard to unravel as much of GPR40′s basic biology as they can behind the scenes.