↓ Expand ↓

Category → Clinical Trials

Liveblogging First-Time Disclosures of Drug Structures from #ACSNOLA

Bookmark this page now, folks. On Wednesday, April 10, I will be here, liveblogging the public debut of five drug candidates’ structures. The “First Time Disclosures” Session at the ACS National Meeting in New Orleans runs from 2PM-4:55PM Central time. I am not able to conjure up a permalink to the session program, so here’s a screengrab instead.
NOLAblog-program
1:20PM I’m in hall R02, where the session’s set to begin in about 40 minutes. Found a seat with a power outlet nearby, so I’m good to go!
2:29PM
IMG_3813
BMS-906024
Company: Bristol-Myers Squibb
Meant to treat: cancers including breast, lung, colon, and leukemia
Mode of action: pan-Notch inhibitor
Medicinal chemistry tidbit: The BMS team used an oxidative enolate heterocoupling en route to the candidate– a procedure from Phil Baran’s lab at Scripps Research Institute. JACS 130, 11546
Status in the pipeline: Phase I
Relevant documents: WO 2012/129353
3:02PM
IMG_3810
LGX818
Company: Novartis Institutes for Biomedical Research and Genomics Institute of the Novartis Research Foundation
Meant to treat: melanoma with a specific mutation in B-RAF kinase: V600E
Mode of action: selective mutant B-RAF kinase inhibitor
Status in the pipeline: Phase Ib/II
Relevant documents: WO 2011/023773 ; WO 2011/025927
3:47PM
IMG_3812
AZD5423
Company: AstraZeneca
Meant to treat: respiratory diseases, in particular chronic obstructive pulmonary disease
Mode of action: non-steroidal glucocorticoid receptor modulators
Medicinal chemistry tidbit: This compound originated in part from a collaboration with Bayer Pharma.
Status in the pipeline: Phase II
Relevant documents: WO 2011/061527 ; WO 2010/008341 ; WO 2009/142568
4:17PM
IMG_3811
Birinapant (formerly known as TL32711)
Company: TetraLogic Pharmaceuticals
Meant to treat: cancer
Mode of action: blocks the inhibitor of apoptosis proteins to reinstate cancer cell death
Status in the pipeline: Phase II
Relevant documents: US 8,283,372
5:00PM
IMG_3814
MGL-3196 (previously VIA-3196)
Company: Madrigal Pharmaceuticals, acquired from VIA Pharmaceuticals, licensed from Roche
Meant to treat: high cholesterol/high triglycerides
Mode of action: mimics thyroid hormone, targeted to thyroid hormone receptor beta in the liver
Medicinal chemistry tidbit: this molecule was discovered at Roche’s now-shuttered Nutley site.
Status in the pipeline: completed Phase I trials
Relevant documents: WO 2007/009913 ; WO 2009/037172

And that’s it, folks! Watch the April 22nd issue of C&EN for more on this session.

New Targets in Advanced Prostate Cancer

The following is a guest post from Sally Church (known to many in the twittersphere as @MaverickNY), from the Pharma Strategy Blog.

Much hullabaloo has been in the medical news over the past year over new options for the treatment of metastatic castrate resistant prostate cancer (CRPC). FDA approval for two new drugs, abiraterone acetate (J&J’s Zytiga) and enzalutamide (Astellas/Medivation’s Xtandi), has meant a sharp focus on drugs that target the androgen receptor. But at the the American Society of Clinical Oncology Genitourinary (ASCO GU) symposium, held last month in Orlando, intriguing data on new targets for CRPC emerged.

Zytiga and Xtandi target the androgen receptor (AR) in very different ways, but the overall effect is similar, in that they can effectively reduce the levels of prostatic serum antigen (PSA), which is reactivated in tumors with advanced disease. Zytiga acts high up in the steroidogenic pathway and one side effect associated with monotherapy is the development of mineralcorticosteroid effects, leading to over stimulation of the adrenal glands and hypokalaemia.  This toxicity must therefore managed with concomitant prednisone therapy. Xtandi, meanwhile, more directly targets the androgen receptor, which tends to be amplified in advanced prostate cancer. The drug doesn’t have same effect on cortisol production as Zytiga, and can therefore be taken without steroids.

The androgen receptor isn’t the only valid target in CRPC, however.  Aldo-keto reductase 1C3 (AK1C3), an enzyme that can facilitate androstenedione conversion to testosterone, is also over-expressed in advanced prostate cancer. Several new agents in early development appear to specifically target AK1C3. At ASCO GU, a couple of abstract particularly caught my eye and are worth highlighting here:

1) Bertrand Tombal et al., presented the initial data on Xtandi monotherapy in advanced prostate cancer in the hormone-naive setting, that is prior to CRPC.  Traditionally, Androgen Deprivation Therapy (ADT) is given to patients with high risk disease.  In the US, LHRH antagonists are used first-line, followed by AR antagonists such as bicalutamide, giving a basis for the rationale testing Xtandi, which is a more complete antagonist of the AR than bicalutamide.

In this trial, the single arm design sought to determine whether not enzalutamide would have activity in patients who had not received standard ADT therapy. The waterfall plots in this study (n=67) were impressive. The results showed that:

a) Ninety-three percent of study participants experienced a ≥80% PSA decrease at week 25.

b) Median change in PSA was -99.6% (range -100% to -86.5%).

In other words, most of the men in this trial responded well to Xtandi, suggesting that a randomized trial is well worth pursuing next.

You can read more about the specifics of this new development and what Dr Tombal had to say here.

2) Ramesh Narayanan et al., presented an intriguing poster on a new preclinical compound from GTX Inc that specifically targets AK1C3. The results demonstrated some nice inhibitory activity of AKR1C3, with reduced androgen signaling and CRPC tumour growth. It is important to selectively inhibit C3 and not the C1 and C2 isoforms, since the latter are involved in production of the sex hormones.  Inhibition of C1 and C2 is also counter-productive because it can increase the androgenic signal and deprive ERβ of its ligand. To date, the challenge has been to develop a C3 isoform specific inhibitor, making GTX-560 a compound that may be worthwhile watching out for in the clinic.

Recently, Adeniji et al., (2011) observed that, “AKR1C3 plays a pivotal role in prostate tumor androgen biosynthesis, inhibitors of this enzyme have the potential to be superior to abiraterone acetate, a CYP17/20 hydroxylase/lyase inhibitor.”

Clearly, this is a promising development in CRPC, however, it is early days yet and we will have to wait and see how the clinical trials progress with this new agent.

New developments in Advanced Pancreatic Cancer from ASCO GI 2013 – Part 2

The following is a guest post from Sally Church (known to many in the twittersphere as @MaverickNY), from the Pharma Strategy Blog.

In my last post on The Haystack, we discussed the phase III data from the Abraxane MPACT trial in advanced pancreatic cancer that was presented at the recent ASCO GI meeting in San Francisco. Two other late-stage studies in pancreatic cancer caught my eye—fresh data for AB Science’s kinase inhibitor masitinib and Sanofi’s multidrug pill S1.

Masitinib is an oral tyrosine kinase inhibitor from AB Science that targets KIT, PDGFR, FGFR3 and has shown activity in gastrointestinal stromal tumours (GIST). A different version of the drug (Masivet, Kinavet) is also approved in France and the US for the treatment of a dog mast cell (skin) cancers, which are also known to be KIT-driven.

S1 is multidrug pill from Sanofi and Taiho that consists of tegafur (a prodrug of 5FU), gimeracil (5-chloro-2,4 dihydropyridine, CDHP) which inhibits dihydropyrimidine dehydrogenase (DPD) enzyme, and oteracil (potassium oxonate, Oxo), which reduces gastrointestinal toxicity. Previous Japanese studies have demonstrated effectiveness of this agent in gastric and colorectal cancers, so a big unaswered question is whether it is effective in pancreatic cancer.

So what was interesting about the latest data at this meeting?

At the ASCO GI conference in 2009, French oncologist Emmanuel Mitry presented data from a small Phase II study of the effect of combining masitinib and Eli Lilly’s Gemzar in advanced pancreatic cancer. The study had just 22 patients, but the median overall survival of 7.1 months in was not a large improvement over what is often seen with the standard of care, Gemzar given alone, or with a combination of Gemzar and Genentech’s Tarceva. Over the years, many combination therapies based on Gemzar have failed to show superiority over single agent therapy. It’s both a high unmet medical need and a high barrier to beat.  Thus, the phase III data for the combination of masitnib and Gemzar was highly anticipated at this year’s ASCO GI meeting.

Gael Deplanque and colleagues compared masitinib plus Gemzar to Gemzar plus placebo.  Although the overall trial results for median overall survival were slightly higher than in the phase II study, they were not significant (7.7 versus 7.0 months, P=0.74; HR=0.90).

Some promising data was observed, however, in a subset of the population identified by a profile of biomarkers that the authors vaguely described as, “a specific deleterious genomic biomarker (GBM) consisting of a limited number of genes.” No other details on the actual genes or biomarkers were was provided, but the subset was described as having an improved MOS to 11.0 months compared to the Gemzar and placebo arm.

They also noted that patients with high pain, who usually do poorly on standard chemotherapy, also saw improvement with the masitinib combination. AB Science might have found a particularly aggressive subset that respond to masitinib, in which case, a biomarker would be useful in selecting those patients most likely to respond, as opposed to a catch-all approach where everyone is treated regardless of the predictive value.

AB Science has asked European regulatory authorities for approval, but the Phase III data will not be sufficient for US approval. The company will need to validate the biomarker panel in a large-scale randomized study, and a new phase III trial is now recruiting patients. The outcome of that study won’t be known for awhile, but the hope is for more insight into how to choose the right patients to respond to masitinib in combination with Gemzar.

The other compound featuring late-stage results in pancreatic cancer was Sanofi’s S1. The compound is interesting, but so far its development has been limited to Asian patients, particularly people of Japanese origin. Studies in caucasians have not seen any benefit over standard 5FU therapy.

Katsuhiko Uesaka, medical deputy director at Shizuoka Cancer Center Hospital in Japan, presented encouraging data for the use of S1 as adjuvant therapy in combination with Gemzar after surgical resection (relevant in stage I-III pancreatic cancer). They compared S1 and Gemzar in a head to head non-inferiority trial (with 385 patients. In the interim analysis reported at this year’s ASCO GI meeting, the hazard ratio for S-1 to Gemzar was 0.56, while the 2-year survival rates were 53% for Gemzar and 70% for S-1. The percentage of serious side effects were similar to previously reported studies with Gemzar and S-1, including fatigue (4.7/5.4), anorexia (5.8/8.0), leukopenia (38.7/8.6), thrombocytopenia (9.4/4.3), anemia (17.3/13.4), and elevated AST (5.2/1.1).

Overall, the authors concluded that S-1 adjuvant chemotherapy was shown to be as good as, perhaps even better than Gemzar, even suggesting that S-1 could be considered the new standard treatment for resected pancreatic cancer. It should be noted, however, that this data is only applicable to patients of Japanese origin since no caucasian data was included in this analysis.

 

New Developments in Advanced Pancreatic Cancer from ASCO GI 2013 – Part 1

The following is a guest post from Sally Church (known to many in the twittersphere as @MaverickNY), from the Pharma Strategy Blog.

The cancer research conference season kicked off in earnest in 2013 with the American Society of Clinical Oncology (ASCO)’s Gastrointestinal Symposium, held in San Francisco in late January. Some of the most anticipated data to be presented at ASCO GI was for drugs that treat pancreatic cancer, with three drugs—Celgene’s Abraxane, AB Science’s masitinib, and Sanofi’s S1, generating the most interest.

With this post, we’ll take a closer look at the most advanced of the three agents, Abraxane, which generated encouraging results in a Phase III study. Later this week, we’ll tackle masitinib and S1.

Abraxane is a nanoparticle albumin-bound form of the breast cancer drug paclitaxel, and is designed to improve the activity of the active ingredient. Abraxane is already approved in the US for advanced breast and lung cancers, and recently showed signs of activity in metastatic melanoma.

At ASCO GI, Daniel Von Hoff, director of the Translational Genomics Research Institute, presented data from a randomized phase III study called MPACT that compared the effects of Lilly’s Gemzar, the current standard of care, to a once weekly combination of Gemzar and Abraxane in patients with metastatic adenocarcinoma of the pancreas. With 861 patients, this was a large global study that sought to determine whether the combination would outdo the regulatory standard of care.

A note on the trial design: Although this study uses Gemzar as the standard of care, in practice, many leading oncologists prescribe FOLFIRINOX (fluorouracil, leucovorin, irinotecan and oxaliplatin) for advanced pancreatic patients. But because FOLFIRINOX is generic, and is not formally approved by FDA for advanced pancreatic cancer, Phase III studies tend to match new drug candidates up against Gemzar.

As Hedy Kindler, director of gastrointestinal oncology at the University of Chicago, explained, FOLFIRINOX is widely used because the regimen has “the higher response rate, and that has the longer median survival.”

However, FOLFIRINOX also has unpleasant side effects, and in private practice settings, oncologists prefer to use less toxic combinations based on Gemzar—namely, Gemzar alone, GemOx (with oxaliplatin), or GemErlotinib (with Tarceva, an EGFR TKI). To provide context, FOLFIRINOX typically has an improved survival of approximately 11 months, while gemcitabine or gemcitabine plus erlotinib elicit a 6-7 month improvement in median overall survival (MOS).  Erlotinib added 12 days of extra survival over gemcitabine alone, but unfortunately we have no way of selecting those advanced pancreatic patients most likely to respond to EGFR therapy.

Celgene is exploring the combination of Abraxane and Gemzar based on preclinical work that suggests Abraxane can knock out the protective stroma surrounding the tumor, thereby providing better penetration of the tumor.  The phase II data led to a promising 12.2 months improvement in median overall survival.

In general, results from randomized phase III trials tends to be lower than that reported in the smaller studies. This is exactly what happened in the MPACT trial, with the Abraxane combination showing a MOS of 8.7 months versus 6.7 months for Gemzar alone, a highly statistical significant finding (P<0.000015). The hazard ratio (HR) was 0.72, suggesting that the combination gave a 28% reduction in the risk of death versus gemcitabine.

Kindler is eager to use and learn more about the combination and notes that it will be another option for oncologists rather than a new standard of care.

This is encouraging data and met the primary endpoint. Celgene is expected to file for approval for Abraxane in advanced pancreatic adenocarcinoma in the second half of the year. Data on a previously identified biomarker (SPARC expression) was not yet available and is expected to be presented at the annual ASCO meeting in June.  The audience at the GI meeting were clearly expecting survival to be higher in those patients with high SPARC expression, but we will see what happens.

Advanced pancreatic cancer is a particularly devastating disease – the incidence and prevalence are approximately equal, with patients typically having a year of life left.  The symptoms are vague and insidious plus there are no useful screening approaches approved for earlier detection, so the emergence of potential biomarkers for selecting patients most likely to respond to Abraxane or Tarceva in combination with gemcitabine would be a most welcome advance, especially given the toxicities associated with FOLFIRINOX.

 

 

Trouble Brewing for New HCV Meds

In a blow to the Hepatitic C drug development arena, Bristol-Myers Squibb last night pulled the plug on BMS-986094, an NS5B inhibitor in mid-stage trials. The decision comes just weeks after the company reported a patient suffered from heart failure during a Phase II study of the compound. Nine patients were eventually hospitalized, with varying symptoms of kidney and heart toxicity, according to BMS’s release (See more coverage by Adam Feuerstein at The Street and by Andrew Pollack at the NYT)

BMS-986094? You might know this molecule better as Inhibitex’s former nucleoside INX-089. The molecule came to BMS through its $2.5 billion purchase of Inhibitex in 2011, as we wrote last year here at the Haystack.

The molecule belongs to a family of new nucleosides with fairly common structural motifs: a central sugar appended to a nitrogen heterocycle (usually purine- or uracil-based) and an elaborate phosphoramidate prodrug. These new drugs’ similarities may also prove to be their Achilles heel – Idenix Pharmaceuticals announced an FDA-requested partial clinical hold on their IDX-184 lead. This cautious approach aims to protect patients; though the drugs are similar, 184’s main structural difference – a thioester-based, slightly more-polar prodrug – seems to be enough to distance it from the cardiac side-effects seen with BMS-986094.

For a fairly in-depth look at the chemistry behind these inhibitors, as well as dozens of other analogues that never made it to prime time, check out US Patent 7,951,789 B2, issued to Idenix just last year.

What Pfizer’s Bapineuzumab Failure Means for Parkinson’s Disease Research

The spectacular—and largely anticipated—failure of the Alzheimer’s treatment bapineuzumab has caused an outpouring of stories questioning what went wrong and what it means about pharma’s approach to R&D. Pfizer, Johnson & Johnson, and Elan, the developers of bapineuzumab, are taking a beating in the press for investing so heavily, not to mention raising the hope of so many patients, in a therapy that had not shown strong signs of efficacy in early trials.

Most stories are focused on the implications for Alzheimer’s research and, more generally, the pharma business model given the hundreds of millions of dollars the three companies sank into bapineuzumab. But news of its failure also resonated in research communities focused on other neurogenerative diseases, like Parkinson’s disease and Huntington’s disease, marked by protein aggregation.

I checked in with Todd Sherer, CEO of the Michael J. Fox Foundation to understand what Parkinson’s researchers might learn from the disappointing data from bapineuzumab. Sherer believes there are scientific and business ramifications of the results, both of which might have a chilling effect on neuroscience research.

From a scientific perspective, some are declaring the failure of bapineuzumab the nail in the coffin of the amyloid hypothesis, the theory that the beta-amyloid, the protein responsible for the plaque coating the brains of people with Alzheimer’s disease, is the primary cause of neuron death in the disease. Bapineuzumab, which blocks beta-amyloid, was one of a handful of treatments to test the hypothesis in the clinic. So far, every drug to reach late-stage trials has failed.

Sherer isn’t convinced bapineuzumab is the nail in the amyloid hypothesis coffin. “Obviously the results are very disappointing given the level of interest and investment that’s been put forward for this therapy,” Sherer says. “I don’ think that the result is a definitive answer to the amyloid hypothesis because there are many different ways to target amyloid aggregation therapeutically.”

Parkinson’s researchers are also trying to learn from the setbacks in Alzheimer’s and apply that to studies of drugs targeting alpha synuclein, the protein that clumps together in the brains of people with Parkinson’s disease. “One of the things that is a learning for us in Parkinson’s is really to try to be as smart and informative as we can be in the early clinical trials,” he says.

In Alzheimer’s, for example, the Alzheimer’s Disease Neuroimaging Initiative (ADNI), a collaboration between government, academic, and industry scientists, was formed in 2003 to identify biomarkers that can be used both in the diagnosis of the diseases and in the clinical development of Alzheimer’s drugs. However, Sherer points out that while progress in the ADNI initiative has been promising, it was started too late for many companies, which had already jumped into larger clinical trials of Alzheimer’s therapies.

The Fox Foundation already has a biomarker initiative for Parkinson’s ongoing. The goal is that when the first clinical trial for a vaccine alpha-synuclein, to be led by the Austrian biotech Affiris with support from the non-profit, starts later this year, the tools will be in place to conduct a highly informative study.

On the business side, Sherer worries about the impact of more bad news in Alzheimer’s at a time when many companies are already moving out of drug discovery in many areas of neuroscience. “One of the concerns I have is that investors like big pharma companies and others are already showing a trend towards risk aversion,” Sherer says. “That will just get reinforced by these large trials not succeeding.”

Although basic research is uncovering new therapeutic avenues in diseases like Alzheimer’s and Parkinson’s, companies may decide the bar for understanding the biological relevance for each drug target needs to be set much higher. But when it comes to Parkinson’s disease, he adds, “we are not going to have the luxury of knowing everything about the disease and the biochemical pathways before we need to push forward with therapies.”

One hope Sherer has is that companies will make much of the data from these failed trials available to the research community to try to understand what didn’t work, and what the results really mean. “It’ll be a goldmine of information for other Alzheimer’s trials, but also for other genetic diseases like Parkinson’s disease and Huntington’s disease.”

 

#ASCO12 Data Digest: Overcoming Resistance in Metastatic Melanoma

The following is a guest post from Sally Church (known to many in the twittersphere as @MaverickNY), from the Pharma Strategy Blog.

Not long ago, metastatic melanoma was considered a graveyard for clinical research. But last year brought a major breakthrough in treating skin cancer: the approval of Roche’s Zelboraf (vemurafenib), a small molecule that has proven highly effective at treating the roughly 50% of the patient population that carry the BRAFV600E mutation.

However, Zelboraf has limitations. Patients’ disease eventually becomes resistant to the drug and the lesions caused by the skin cancer tend to return after 6 to 9 months.

At the American Society of Clinical Oncology (ASCO) meeting earlier this month, the big two questions on cancer specialists’ minds were: what are the mechanisms of resistance and how can we develop strategies to overcome them?

An amazing thing about current melanoma research is that several physician-scientists involved in the clinical trials are also actively involved in translational research–this is sadly the exception rather than the rule, in oncology. But the connection between basic science and bedside has meant new targets are being identified and quickly tested in the clinic.

One potential target recently discovered was MEK, a kinase that sits along the same signaling pathway as BRAF. When BRAF activity is turned off by Zelboraf, cancer finds a way to compensate for the loss by exploiting other kinases in the pathway. Researchers think that by combining a BRAF inhibitor with a MEK inhibitor, the pathway might be more comprehensively shut down than by either alone.

Consequently, there was a tremendous amount of buzz around a melanoma trial that looked at combining a BRAF inhibitor, GSK2118436 (dabrafenib), and a MEK 1/2 inhibitor, GSK1120212 (trametinib). Previous studies have shown that given alone, dabrafenib could result in solid response rates of 59%; trametinib, meanwhile, produced a 25% response rate when given as a single agent. Continue reading →

#ASCO12 Data Digest: Combating Resistance in Lung Cancer

The following is a guest post from Sally Church (known to many in the twittersphere as @MaverickNY), from the Pharma Strategy Blog.

The American Society of Clinical Oncology (ASCO) meeting, held in Chicago earlier this month, brought some fascinating presentations on progress in two very tough to treat cancer types, lung cancer and advanced melanoma. This week, we’ll take a look at some of the data that emerged out of ASCO on small molecules that could overcome the limitations of existing therapies.

Treatment for lung cancer and melanoma has commonalities. Small molecule kinase inhibitors targeting a particular aberration driving the tumor have been approved for both types of cancer. But in each case, tumors eventually develop resistance to those kinase inhibitors, usually after about 6 to 9 months of treatment. Researchers are now trying to pinpoint the mechanism that tumor cells use to overcome the activity of kinase inhibitors, and then design new compounds or combinations of drugs that can improve patient outcomes.

Today we’ll focus on advances in non-small cell lung cancer (NSCLC). ASCO brought data from several new agents—most notably, Boehringer Ingelheim’s afatinib, AstraZeneca’s selumetinib, and Novartis’ LDK378—as well as new combinations of existing drugs.

First, some background on the current treatment paradigm in NSCLC: To date, scientists have identified several key protein receptors—EGFR, KRAS, and ALK—as drivers of the disease. Patients with a mutation in EGFR can take Genentech’s Tarceva (erlotinib) or AstraZeneca’s Iressa (gefitinib), but only after undergoing four cycles of chemotherapy. Although Tarceva was approved based on its ability to shrink tumors, it only prolongs survival in NSCLC patients by one month (12 months Tarceva vs. 11 months for placebo). Meanwhile, people who have the anaplastic lymphoma kinase (ALK-ELM4) translocation, can receive Pfizer’s Xalkori (crizotinib), which was approved in the U.S. in 2011.

Unfortunately, people with the KRAS mutation, which is considered mutually exclusive with EGFR, do not benefit from either additional chemotherapy or EGFR inhibitors. New therapies are desperately needed, since prognosis tends to be rather poor.

At ASCO this year, clinicians reported new data that answered some key questions about how best to treat people with these particular mutations: Continue reading →