↓ Expand ↓

Category → Algae

Big Growth Seen for Biobased Materials and Chemicals

Technologies for – and commercialization of – materials and chemicals made from a variety of biobased feedstocks “have reached an inflection point” and are poised to grow significantly over the next four years, according to the minds over at Lux Research.

Rubber Duck

Just Ducky. Biobased capacity, like for non-phthalate plasticizers, has a bright future

Research analyst Julia Allen says overall capacity will nearly double, reaching 13.2 metric tons in 2017.  Growth rates by segment vary but all are robust, spanning intermediate and specialty chemicals and polymers. The biggest percentage growth, and largest category of production, will be for intermediates like adipic acid and that old fashioned biobased product, lactic acid.

The only fly in the punch mentioned in the press release (full report available to Lux clients) is that cellulosic feedstocks are likely to continue to grow  slowly. Corn starch and sugar cane will still dominate, and oily bio feestocks and waste gas will also play a role.

Here’s a nice example of the biobased industry’s maturation. One of the larger biobased chemical intermediate companies is Myriant, a producer of succinic acid made from sugar. Today the company said it has supplied commercial quantities to downstream customer Oxea for use in production of pthalate-free plasticizers. Oxea is a large-ish intermediates company owned by Oman Oil Company. Applications for the plasticizer include food cling wraps, flooring, soft toys and adhesives & sealants.

Of course, just because the industry as a whole is on surer footing and poised for growth, does not mean the same is true for individual companies. In fact, once the market is in a position to determine demand and pricing, we may see what business reporters politely call “consolidation.”

For instance, Florida-based biobased specialty chemical company LS9 was recently bought by mainstream biodiesel fuel maker Renewable Energy Group for a not-huge price tag. And biobased plastics supplier Cereplast has filed for Chapter 11 bankruptcy just this week.

Little Green Feedstocks

It sounds like something from a greenskeeper’s nightmare – certain folks have plans to grow algae and dandelions on purpose, and in large quantities.

Algenol's Paul Woods and his cyanobacteria. Credit: Algenol

Algenol’s Paul Woods and his cyanobacteria. Credit: Algenol

Firstly, in the golf course-choked state of Florida, Algenol CEO Paul Woods is scouting a location for a $500 million algae-to-fuels plant. The company was founded and has been operating in the southern part of the state for years now. Its claim to fame is cheap ethanol made from cyanobacteria in a custom-designed bioreactor. Woods does not, as far as I know, have plans to re-purpose stagnant water traps for the purpose of growing his feedstock.

But Florida, though it is sunny and warm, might have missed out on this slimy opportunity. In recent months, Woods questioned the state’s commitment to biofuels. For example, Governor Rick Scott repealed a state law requiring 10% ethanol in gasoline. But now, according to Fort Myers ABC 7 News, the company has been persuaded to build in its home state – apparently the estimated 1,000 jobs was just the ticket to getting a warmer welcome. Algenol needs to be sited near a major CO2 source (i.e., factory or power plant emissions) and says potential partners have come forward.

Meanwhile, it’s called the Russian Dandelion, though it grows in Germany. This common lawn scourge is bringing about not curses, but praise, for its rubber producing capability. Tire makers are enthused about its white latex sap. The goo is expected to give the subtropical rubber tree a bit of competition. Making rubber from dandelions is not a new idea, but has been given new life by a project at the Fraunhofer Institute for Molecular Biology and Applied Ecology.

Russian dandelions, growing in Germany. Credit: Fraunhofer Institute

Russian dandelions, growing in Germany. Credit: Fraunhofer Institute

Fraunhofer scientists, in a collaboration with folks from tire firm Continental are working on a production process for making tires from the dandelions. In addition to the manufacturing process, the researchers are also using DNA markers to grow new varieties of the plant with higher rubber yields.

The project sounds kind of cute but the researchers behind it are dead serious. The partners have already begun a pilot project and plans are afoot to move to industrial scale. According to them, the first prototype tires made from dandelion rubber will be tested on public roads over the next few years.

You can read an earlier post on the history of dandelion rubber here.

It’s Actually Happening: Military biofuels grants

Never has such a small government payout generated such a busy PR reaction. Late last weeek – and very quietly – the Defense Department awarded three biofuels firms $16 million to craft plans for biorefineries that would produce fuels meeting military specifications.

Jim Lane at Biofuels Digest has been tracking this development closely and he points out that “A coalition of Advanced Biofuels Association, the Air Line Pilots Association, Airlines for America, the American Council on Renewable Energy, the American Farm Bureau Federation, the American Security Project, the Biotechnology Industry Organization, the National Farmers Union and Operation Free was swift to applaud the DoD.”

Great Green Fleet

U.S. Navy’s Great Green Fleet. In July 2012 it ran on a 50/50 biofuel and petroleum blend.

There are two main reasons why these tiny grants (each requires matching funds from the contracting companies) are fairly big news. One is that military spending on biofuels is a very touchy subject in Congress and there were some doubts about whether the program would move forward in this time of austerity and sequestration.

Secondly, U.S. airlines (and those around the world) are extremely keen to see the development of drop-in biobased jet fuel. To have the military join them on the demand side may make the difference between getting the stuff and not getting the stuff.

You can read C&EN’s exploration of bio-based jet fuel efforts. My colleague Andrea Widener wrote about House members’ attempts to block military spending on biofuels.

It is important to note that the funding comes out of the Defense Production Act Title II program and was not, in the end, successfully blocked. The program also would contain funds for a phase II portion of the program though money would have to be appropriated from the FY2013 budget.

In lieu of a press release (the DoD did not issue one), here are further program details that I received from a DoD spokesman.

There were three awards totaling $16.0M in government funds, which will be matched by $17.4M in private sector funds for Phase I of the project.

The first awardee is Emerald Biofuels LLC, which is located in Golf, IL – a northern suburb of Chicago. For this project, Emerald has agreed to match $5.4M in government funding with $6.4M of their own. Second, we have Natures BioReserve LLC of South Sioux City, Nebraska which will match $6.0M in government funding with $6.2M of company funds. The third awardee is Fulcrum Brighton Biofuels of Pleasanton, CA which will receive $4.7M in government funding and match that with $4.7M of their own funds.

Phase I of the project involves validation of production technology, verification of technical maturity, site selection, plant design, permitting, and detailed cost estimation, all of which will require 12-15 months to complete. Following Phase I, interagency technical experts will evaluate the projects to determine if they will move on to Phase II, which is for biorefinery construction

If all Phase I projects successfully complete the second phase of this project, awardees project that this would represent more than 150M gallons per year of drop-in, military-compatible fuels with initial production capacity by 2016 at an average cost of less than $4 per gallon.

For now, the U.S. military is sailing in relatively safe waters when it sticks with research and testing projects. But it would need a political mine sweeper ahead of any plans to build its own biorefineries or make large purchase contracts for pricey biofuels such as the $26/gal algae fuel used to power the Navy’s recent exercises off the coast of Hawaii.

Speaking of the Navy, one way to track the progress of biofuels in the military is to keep an eye on the Navy’s Great Green Fleet.

 

Giant Gobs of Algae Coming From Solazyme

Starting soon, oil-producing algae will be replicating at B-horror-movie quantities. Imagine a lab coat-wearing scientist running into the street shouting “300,000 metric tons!” while scores of screaming people run by, pursued by a giant wave of green slime.

But be not worried, the algae in question will be safely confined to fermentation tanks thanks their overlords at Solazyme. And many of those tanks will be in Brazil (so the people would be screaming in Portuguese, I guess.)

Earlier this week, Solazyme says that it has agreed with its sugar-producing partner Bunge to increase the production capacity for algal oils from an original 100,000 metric ton amount to 300,000 metric tons. It seems from the press release that Bunge will have a hand in marketing the tailored oils to the edible oil market in Brazil.

If you happen to live in the U.S. and have a craving for oil derived from algae, you’ll be pleased to learn that another large blob will be coming to Clinton, Iowa, starting in early 2014. Solazyme and its little green workers plan to ooze into the idle Archer Daniels Midland plant formerly occupied by Metabolix’s bioplastics operation. The plant will start out making 20,000 metric tons, but aims to grow to 100,000 metric tons.

 

Algae Ponds: the lovers and the haters

This week’s issue of C&EN includes some news from algae-based biofuels firm Sapphire Energy. The company is reporting its first harvests of algae biomass from a large, outdoor algae farm in New Mexico.

Sapphire’s outdoor raceway ponds in New Mexico. Source: Sapphire Energy

Sapphire has grown and gathered 21 million gallons of algae biomass totaling 81 tons. Eventually, the plan is to make a kind of crude oil from the algae. They grow the stuff in very large outdoor ponds. According to the press release, “the cultivation area consists of some of the largest algae ponds ever built with groupings of 1.1 acre and 2.2 acre ponds which are 1/8 of a mile long.”

You’d think that the promoters of algae for biofuels would be clinking glasses filled with spirulina-enhanced juice at the news. But you’d be wrong.

In fact, a trade group of algae firms calling itself the National Algae Association says the kind of ponds used by Sapphire – known as raceway ponds (you can see why looking at this image) – will not scale up commercially. Instead the NAA supports the development of photobioreactors (PBRs for short). Similarly, algae researcher Jonathan Trent, writing in a New Scientist magazine piece that also appears in Slate is arguing in favor of photobioreactors. Specifically, Trent says PBRs should be deployed offshore. I’ll quote from his article where he summarizes the raceway/PBR tradeoffs:

There remains the question of how and where to grow the algae. A few species are cultivated commercially on a small scale, in shallow channels called raceways or in enclosures called photobioreactors (PBRs). Raceways are relatively inexpensive, but need flat land, have lower yields than PBRs and problems with contamination and water loss from evaporation. PBRs have no problems with contamination or evaporation, but algae need light, and where there is light, there is heat: A sealed PBR will cook, rather than grow, algae. And mixing, circulating, and cleaning problems send costs sky high.

Trent doesn’t mention what industry analysts complain about the most. When it comes to algae, though PBRs might be the best bet, they require too much capital expenditure for the equipment.

Meanwhile, Solazyme, which started life as an algal fuels firm but now is manufacturing oils for use in skin cream and other high value applications, grows its algae in a third way – its algae live in bioreactors, but in the dark. They eat sugar and make oil. Is there a best way to commercialize algae for fuels and chemicals? Is there any way? It seems that it is still too early to tell.

Biofuels from Seaweed

The concept of making biofuels from seaweed has been floating around as an idea for a while now, but this week there were a few real news items about it. Well, I consider it real news when it makes the cover of Science.

Seaweed in your tank? Credit:
Melody Bomgardner

Following the theme that any ready source of carbon, not already used for something, is a prime target for biofuel prospectors, scientists are working to create microorganisms that can break down seaweeed alginates into sugar, and then make ethanol from it.

The microbe is our friend E. coli, and researchers at Bio Architecture Lab, a biofuel and renewable chemicals company in Berkeley, Calif. have added genes that allow E. coli to first break down alginates into smaller bits, digest those more sugar-like bits, and then spit out ethanol.  Unlike in the processes usually used for cellulosic ethanol, the Science article writers claim their bacteria can chomp seaweed without chemical or heat pre-treatment.

If seaweed as cover model isn’t convincing, a second seaweeed-flavored item announced this week is a new collaboration between enzyme maker Novozymes and an Indian seaweed company called Sea6 Energy. “The research alliance will use enzymes to convert seaweed-based carbohydrates to sugar, which can then be fermented to produce ethanol for fuel, fine chemicals, proteins for food, and fertilizers for plants,” says the press release. (I read that to mean the non-sugar portion would be made into food and fertilizer – if sugar can be made into protein I’m going to have to change my diet).

Here’s the benefits that the seaweed pushers are claiming: seaweed has a high sugar content (presumably after those enzymes get to working), they don’t require irrigation (ha! no kidding) or fertilizer, and of course, duh, they don’t take up cropland. Seaweed – also called macroalgae by some – can be raised and harvested without those fancy bioreactors used by algae-to-fuel operators.

Seaweed can, however, be a purpose-grown crop. In fact, Sea6 already has a supply chain set up for that, as do firms like the chemical company FMC that harvest and process seaweed for the food markets. Alginate and carrageenen are already big business helping to make your low-fat Ranch dressing taste creamy (see Call in the Food Fixers for more on seaweed in your food).

But what works for the high-margin food additives business may not be profitable for the lower-margin fuel industry. Still, it’s an idea that’s spreading.

Advanced Biofuels: pipedream or solid investment?

I read with much amusement this week two dueling editorials about advanced biofuels; one from the Wall Street Journal and the other - a reaction piece – from Biofuels Digest. One was pr0 and one against, I’ll let you strain your brain figuring out which was which.

Editorial boards have plenty of information to pick from to illustrate a variety of contentions – from advanced biofuels are a “march of folly” paid for with “an invisible tax paid at the gas pump” to biofuel as wise investment not just for government, but for companies like Shell and BP. Evidence for the former view: Range Fuels, which absorbed both grants and loans before succombing to the perils of scale-up engineering last week. Evidence for the latter would include Mascoma‘s joint venture with Valero Energy to build a 20 million gal per year cellulosic ethanol plant in Michigan. Valero will foot a good portion of the estimated $232 million bill to construct the facility.

The crux of the problem, as Cleantech Chemistry and many others have observed (including the National Academies) is that the type of advanced biofuels (i.e. fuel not made from food-like feedstocks such as corn sugar) called cellulosic ethanol has not achieved scale to date. (There are other, more lifecycle concerns, as well). Biofuel Digest editors point out that the larger proportion of advanced biofuels scaling up now are of a different sort- like biodiesel for example. In short, they point out there are multiple roads to get to the same place.

The Wall Street Journal, to its credit, does not politicize its arguments – it rightly notes that Range Fuel’s support came from programs created by the Bush administration. Meanwhile, Biofuels Digest points out that the CapEx on the Mascoma plant pencils out to $11 per gal of ethanol for the first phase. The plant may produce up to 80 million gal per year, however, and all the usual promises of cheaper production through scale are supposed to apply.

US Cleantech firms in white-knuckle mode

There has been one positive piece of news this week for the cleantech sector – Solazyme is part of a $12 million grant to supply the U.S. Navy with 450,000 gal of biofuel. Solazyme’s algal oil will be used along with used cooking grease to power a fuel plant run by Dynamic Fuels, a joint venture between Tyson Foods and Syntroleum. They’ll be making both renewable jet fuel and marine fuel. Press releases about the deal emphasize that it is the single largest biofuel purchase in government history.

Thank goodness cleantech has the government as a customer. Private industry customers haven’t panned out so well lately for battery firms like A123 Systems and Ener1, as reported this week in the Wall Street Journal. Major investments in battery manufacturing – supported in large part from Recovery Act funds – have been met with disappointing demand from electric-car makers. A123 Systems has scaled back its scale-up plans because its big customer, Fisker Automotive, has slowed its own plants due to technical problems. Meanwhile Ener1′s customer Think Global has filed for bankruptcy protection.

When C&EN wrote about the battery scale-up, a major concern at the time was that there would be more battery capacity than cars to put them in, and that seems to be the case for now.

Back to biotech, according to a Reuters report from Pike Research analyst Mackinnon Lawrence, the biofuels industry is very concerned that budget cutting in Congress will pull the rug out from programs that are helping companies bootstrap their way to cost parity with petroleum. Part of the problem is that industry’s promises to have commercial-scale production on line by this year  have not panned out. Cellulosic ethanol is the biggest disappointment, and so now attention is likely to switch to drop-in biofuels like renewable gasoline and renewable diesel. Or, even better, jet fuel.