Big Growth Seen for Biobased Materials and Chemicals
Feb19

Big Growth Seen for Biobased Materials and Chemicals

Technologies for – and commercialization of – materials and chemicals made from a variety of biobased feedstocks “have reached an inflection point” and are poised to grow significantly over the next four years, according to the minds over at Lux Research. Research analyst Julia Allen says overall capacity will nearly double, reaching 13.2 metric tons in 2017.  Growth rates by segment vary but all are robust, spanning intermediate and specialty chemicals and polymers. The biggest percentage growth, and largest category of production, will be for intermediates like adipic acid and that old fashioned biobased product, lactic acid. The only fly in the punch mentioned in the press release (full report available to Lux clients) is that cellulosic feedstocks are likely to continue to grow  slowly. Corn starch and sugar cane will still dominate, and oily bio feestocks and waste gas will also play a role. Here’s a nice example of the biobased industry’s maturation. One of the larger biobased chemical intermediate companies is Myriant, a producer of succinic acid made from sugar. Today the company said it has supplied commercial quantities to downstream customer Oxea for use in production of pthalate-free plasticizers. Oxea is a large-ish intermediates company owned by Oman Oil Company. Applications for the plasticizer include food cling wraps, flooring, soft toys and adhesives & sealants. Of course, just because the industry as a whole is on surer footing and poised for growth, does not mean the same is true for individual companies. In fact, once the market is in a position to determine demand and pricing, we may see what business reporters politely call “consolidation.” For instance, Florida-based biobased specialty chemical company LS9 was recently bought by mainstream biodiesel fuel maker Renewable Energy Group for a not-huge price tag. And biobased plastics supplier Cereplast has filed for Chapter 11 bankruptcy just this...

Read More
Little Green Feedstocks
Nov01

Little Green Feedstocks

It sounds like something from a greenskeeper’s nightmare – certain folks have plans to grow algae and dandelions on purpose, and in large quantities. Firstly, in the golf course-choked state of Florida, Algenol CEO Paul Woods is scouting a location for a $500 million algae-to-fuels plant. The company was founded and has been operating in the southern part of the state for years now. Its claim to fame is cheap ethanol made from cyanobacteria in a custom-designed bioreactor. Woods does not, as far as I know, have plans to re-purpose stagnant water traps for the purpose of growing his feedstock. But Florida, though it is sunny and warm, might have missed out on this slimy opportunity. In recent months, Woods questioned the state’s commitment to biofuels. For example, Governor Rick Scott repealed a state law requiring 10% ethanol in gasoline. But now, according to Fort Myers ABC 7 News, the company has been persuaded to build in its home state – apparently the estimated 1,000 jobs was just the ticket to getting a warmer welcome. Algenol needs to be sited near a major CO2 source (i.e., factory or power plant emissions) and says potential partners have come forward. Meanwhile, it’s called the Russian Dandelion, though it grows in Germany. This common lawn scourge is bringing about not curses, but praise, for its rubber producing capability. Tire makers are enthused about its white latex sap. The goo is expected to give the subtropical rubber tree a bit of competition. Making rubber from dandelions is not a new idea, but has been given new life by a project at the Fraunhofer Institute for Molecular Biology and Applied Ecology. Fraunhofer scientists, in a collaboration with folks from tire firm Continental are working on a production process for making tires from the dandelions. In addition to the manufacturing process, the researchers are also using DNA markers to grow new varieties of the plant with higher rubber yields. The project sounds kind of cute but the researchers behind it are dead serious. The partners have already begun a pilot project and plans are afoot to move to industrial scale. According to them, the first prototype tires made from dandelion rubber will be tested on public roads over the next few years. You can read an earlier post on the history of dandelion rubber...

Read More
It’s Actually Happening: Military biofuels grants
May30

It’s Actually Happening: Military biofuels grants

Never has such a small government payout generated such a busy PR reaction. Late last weeek – and very quietly – the Defense Department awarded three biofuels firms $16 million to craft plans for biorefineries that would produce fuels meeting military specifications. Jim Lane at Biofuels Digest has been tracking this development closely and he points out that “A coalition of Advanced Biofuels Association, the Air Line Pilots Association, Airlines for America, the American Council on Renewable Energy, the American Farm Bureau Federation, the American Security Project, the Biotechnology Industry Organization, the National Farmers Union and Operation Free was swift to applaud the DoD.” There are two main reasons why these tiny grants (each requires matching funds from the contracting companies) are fairly big news. One is that military spending on biofuels is a very touchy subject in Congress and there were some doubts about whether the program would move forward in this time of austerity and sequestration. Secondly, U.S. airlines (and those around the world) are extremely keen to see the development of drop-in biobased jet fuel. To have the military join them on the demand side may make the difference between getting the stuff and not getting the stuff. You can read C&EN’s exploration of bio-based jet fuel efforts. My colleague Andrea Widener wrote about House members’ attempts to block military spending on biofuels. It is important to note that the funding comes out of the Defense Production Act Title II program and was not, in the end, successfully blocked. The program also would contain funds for a phase II portion of the program though money would have to be appropriated from the FY2013 budget. In lieu of a press release (the DoD did not issue one), here are further program details that I received from a DoD spokesman. There were three awards totaling $16.0M in government funds, which will be matched by $17.4M in private sector funds for Phase I of the project. The first awardee is Emerald Biofuels LLC, which is located in Golf, IL – a northern suburb of Chicago. For this project, Emerald has agreed to match $5.4M in government funding with $6.4M of their own. Second, we have Natures BioReserve LLC of South Sioux City, Nebraska which will match $6.0M in government funding with $6.2M of company funds. The third awardee is Fulcrum Brighton Biofuels of Pleasanton, CA which will receive $4.7M in government funding and match that with $4.7M of their own funds. Phase I of the project involves validation of production technology, verification of technical maturity, site selection, plant design, permitting, and detailed cost estimation, all of which will require 12-15 months...

Read More
Giant Gobs of Algae Coming From Solazyme
Nov16

Giant Gobs of Algae Coming From Solazyme

Starting soon, oil-producing algae will be replicating at B-horror-movie quantities. Imagine a lab coat-wearing scientist running into the street shouting “300,000 metric tons!” while scores of screaming people run by, pursued by a giant wave of green slime. But be not worried, the algae in question will be safely confined to fermentation tanks thanks their overlords at Solazyme. And many of those tanks will be in Brazil (so the people would be screaming in Portuguese, I guess.) Earlier this week, Solazyme says that it has agreed with its sugar-producing partner Bunge to increase the production capacity for algal oils from an original 100,000 metric ton amount to 300,000 metric tons. It seems from the press release that Bunge will have a hand in marketing the tailored oils to the edible oil market in Brazil. If you happen to live in the U.S. and have a craving for oil derived from algae, you’ll be pleased to learn that another large blob will be coming to Clinton, Iowa, starting in early 2014. Solazyme and its little green workers plan to ooze into the idle Archer Daniels Midland plant formerly occupied by Metabolix’s bioplastics operation. The plant will start out making 20,000 metric tons, but aims to grow to 100,000 metric tons....

Read More
Algae Ponds: the lovers and the haters
Sep05

Algae Ponds: the lovers and the haters

This week’s issue of C&EN includes some news from algae-based biofuels firm Sapphire Energy. The company is reporting its first harvests of algae biomass from a large, outdoor algae farm in New Mexico. Sapphire has grown and gathered 21 million gallons of algae biomass totaling 81 tons. Eventually, the plan is to make a kind of crude oil from the algae. They grow the stuff in very large outdoor ponds. According to the press release, “the cultivation area consists of some of the largest algae ponds ever built with groupings of 1.1 acre and 2.2 acre ponds which are 1/8 of a mile long.” You’d think that the promoters of algae for biofuels would be clinking glasses filled with spirulina-enhanced juice at the news. But you’d be wrong. In fact, a trade group of algae firms calling itself the National Algae Association says the kind of ponds used by Sapphire – known as raceway ponds (you can see why looking at this image) – will not scale up commercially. Instead the NAA supports the development of photobioreactors (PBRs for short). Similarly, algae researcher Jonathan Trent, writing in a New Scientist magazine piece that also appears in Slate is arguing in favor of photobioreactors. Specifically, Trent says PBRs should be deployed offshore. I’ll quote from his article where he summarizes the raceway/PBR tradeoffs: There remains the question of how and where to grow the algae. A few species are cultivated commercially on a small scale, in shallow channels called raceways or in enclosures called photobioreactors (PBRs). Raceways are relatively inexpensive, but need flat land, have lower yields than PBRs and problems with contamination and water loss from evaporation. PBRs have no problems with contamination or evaporation, but algae need light, and where there is light, there is heat: A sealed PBR will cook, rather than grow, algae. And mixing, circulating, and cleaning problems send costs sky high. Trent doesn’t mention what industry analysts complain about the most. When it comes to algae, though PBRs might be the best bet, they require too much capital expenditure for the equipment. Meanwhile, Solazyme, which started life as an algal fuels firm but now is manufacturing oils for use in skin cream and other high value applications, grows its algae in a third way – its algae live in bioreactors, but in the dark. They eat sugar and make oil. Is there a best way to commercialize algae for fuels and chemicals? Is there any way? It seems that it is still too early to...

Read More
Biofuels from Seaweed
Feb03

Biofuels from Seaweed

The concept of making biofuels from seaweed has been floating around as an idea for a while now, but this week there were a few real news items about it. Well, I consider it real news when it makes the cover of Science. Seaweed in your tank? Credit: Melody Bomgardner Following the theme that any ready source of carbon, not already used for something, is a prime target for biofuel prospectors, scientists are working to create microorganisms that can break down seaweeed alginates into sugar, and then make ethanol from it. The microbe is our friend E. coli, and researchers at Bio Architecture Lab, a biofuel and renewable chemicals company in Berkeley, Calif. have added genes that allow E. coli to first break down alginates into smaller bits, digest those more sugar-like bits, and then spit out ethanol.  Unlike in the processes usually used for cellulosic ethanol, the Science article writers claim their bacteria can chomp seaweed without chemical or heat pre-treatment. If seaweed as cover model isn’t convincing, a second seaweeed-flavored item announced this week is a new collaboration between enzyme maker Novozymes and an Indian seaweed company called Sea6 Energy. “The research alliance will use enzymes to convert seaweed-based carbohydrates to sugar, which can then be fermented to produce ethanol for fuel, fine chemicals, proteins for food, and fertilizers for plants,” says the press release. (I read that to mean the non-sugar portion would be made into food and fertilizer – if sugar can be made into protein I’m going to have to change my diet). Here’s the benefits that the seaweed pushers are claiming: seaweed has a high sugar content (presumably after those enzymes get to working), they don’t require irrigation (ha! no kidding) or fertilizer, and of course, duh, they don’t take up cropland. Seaweed – also called macroalgae by some – can be raised and harvested without those fancy bioreactors used by algae-to-fuel operators. Seaweed can, however, be a purpose-grown crop. In fact, Sea6 already has a supply chain set up for that, as do firms like the chemical company FMC that harvest and process seaweed for the food markets. Alginate and carrageenen are already big business helping to make your low-fat Ranch dressing taste creamy (see Call in the Food Fixers for more on seaweed in your food). But what works for the high-margin food additives business may not be profitable for the lower-margin fuel industry. Still, it’s an idea that’s...

Read More