#FoodChem Carnival: A bit o’ science on your Thanksgiving tippling
Nov16

#FoodChem Carnival: A bit o’ science on your Thanksgiving tippling

In my family, the first thing that happens when you walk in the door to my Aunt Kim’s house on Thanksgiving is you find yourself on the receiving end of the world’s best hug. The second thing that happens is a glass of champagne is thrust into your hand. So when I sat down to consider how to contribute to this week’s Thanksgiving-inspired #foodchem carnival, the science of champagne seemed a natural fit. And since some might consider champagne medicinal, it can squeeze by at the Haystack, right? Anything you want to know about the science of champagne can pretty much be learned from Gérard Liger-Belair, a professor of chemical physics at the University of Reims Champagne-Ardenne. Liger-Belair has possibly the best job in existence: he spends his days trying to decipher the chemistry and physics of champagne. We covered some of his tips for champagne serving here (most practical for every day imbibing: don’t use soap to wash your flutes. Instead, rinse with hot water and wipe with a towel. The cellulose fibers left behind from your swipe promote effervescence.). More recently, Liger-Belair has come out with evidence that size does matter—bottle size, that is. The smaller the bottle, the lower the concentration of dissolved CO2 in each successive glass poured. The message here: forget those wimpy splits, and go magnum. But if you do have a smaller bottle (okay, or a normal 750mL bottle), you can maintain some of the effervescence by keeping nice and frosty. Meanwhile, if you want to enjoy that nose-tickling fizz at the top of your glass for longer, this study suggests you should pick a flute over a coupe. This family prefers a flute, anyway. Less spillage. So there you have it. Happy Turkey Day, all! For more on the science of champagne, check out: What’s that Stuff: Champagne: http://pubs.acs.org/cen/whatstuff/stuff/8201champagne.html Unraveling different chemical fingerprints between a champagne wine and its aerosols: http://www.pnas.org/content/106/39/16545 Uncorked: The Science of Champagne:...

Read More
#ChemCoach Carnival: From Big Pharma to Non-Profit
Oct25

#ChemCoach Carnival: From Big Pharma to Non-Profit

We’re almost at the end of National Chemistry week, folks, and the Haystack is finally kicking in to blogger SeeArrOh’s now rampant #ChemCoach carnival. The goal of any carnival is to get a lot of different bloggers to post on the same topic–in this case, to write about how they got to where they are today as a way of educating young chemists on their career options. Round-ups of the dozens of posts this week can be found here, here, and here. Since the science writing field has been well covered here and by our own Carmen Drahl, and because the Haystack is focused on all things pharma, I thought I’d enlist the help of someone with a much more illustrious career than my own. Without further ado, I give you some words of career wisdom from TB Alliance‘s chemistry guru Christopher Cooper: Your current job.   I’m Senior Director of Chemistry at the Global Alliance for TB Drug Development (TB Alliance), a non-profit, product development partnership headquartered in New York City.  My job encompasses all chemistry activities for the Alliance from early-, mid-, and late-stage drug discovery right through drug substance/API manufacturing for clinical trials.  The TB Alliance is dedicated to identifying safe, novel chemical entities for the rapid treatment of tuberculosis worldwide, and my job is to oversee the Alliance’s chemistry needs to achieve our goals (seewww.tballiance.org for more details). What you do in a standard “work day.”   Define “standard” … oh, and define “work day,” as well, please? All kidding aside, working for a small (~45 employees), entrepreneurial, research and development organization means that every day is truly different, whether it’s engaged in project team discussions with collaborators in Chicago and Belgium, or proposing new analogues/chemical series to pursue with chemists in Auckland or Seoul!  In fact, as we engage chemists (medicinal, process, manufacturing) on TB Alliance projects around the globe, my work “day” doesn’t really begin or end.  After all, if it’s 9:00 P.M. on the East Coast, it’s already 9:00 A.M. in Beijing!  Fortunately, the virtual nature of our business model translates into my own flexibility in addressing issues wherever and whenever they occur … and I don’t have to wash my glassware anymore (yey!). What kind of schooling / training / experience helped you get there?   In many ways, my background would appear fairly conventional, despite the more unconventional nature of my current position.  I received my B.S. from Clemson University in 1980, and my M.S. (1982) and Ph.D.’s (1988) from Stanford.  Having worked briefly in the pharmaceutical industry (CIBA-Geigy from 1982-1984), I was eager to return so I accepted a position...

Read More
Cantley Talks Pfizer CTI Collaboration
Oct03

Cantley Talks Pfizer CTI Collaboration

As drug companies forge closer ties with academic researchers, the value of pharma-academia partnerships continues to be cause for much debate (see here, here,  here, and here for more on that). We’ve watched the evolution of these collaborations with interest, and as part of our ongoing coverage, this week’s issue brings an in-depth look at the mechanics of Pfizer’s Centers for Therapeutic Innovation, its network of academic partners centered on hubs in San Francisco, New York, Boston, and San Diego. But much of our focus has been on what drug companies can gain from deeper ties with academia. There’s another side to the coin: what the academic lab gains from teaming up with industry. While visiting Pfizer’s Boston CTI, I was glad to have a long chat with Harvard’s Lewis Cantley, known in cancer research circles for the discovery of the PI3K pathway, about why it made sense to link up with Pfizer. Cantley has had many pharma partnerships, was a founder of Agios Pharmaceuticals, and has sat on the boards of other start-ups. As such, I was curious what made him want to turn to Pfizer for this particular project—developing a drug against a cancer target discovered in his lab–rather than go at it alone, or try to spin out another company. Cantley conceded that his lab could have plugged away at the target for several years and eventually come up with something promising. But the target requires an antibody, and his lab is more experienced at discovering small molecules. Pfizer, meanwhile, could step in with expertise and technology that they otherwise would never have access to, significantly speeding up the drug discovery process. Further, Pfizer made teaming up easy. “The legalities of conflict of interest issues and IP issues had all been addressed with negotiations between Harvard and Pfizer before they even solicited proposals,” Cantley says. “To me, this was huge.” He notes that past partnerships with industry have involved at least a year of negotiating before anyone gets down to doing business—or, as it may be, science. Another positive was that working with Pfizer meant researchers in his lab could continue to be involved with the project. When Cantley became a founder of Agios, which focuses on developing drugs that interrupt cancer cell metabolism, he could no longer ethically allow students in his lab work on that aspect of the science. But under the Pfizer pact, post-docs can continue to explore the drug development as well as any basic biological questions that may arise. Lastly, Cantley was attracted by the facility with which Pfizer and academic scientists could interact. As it turns out, Cantley’s labs are...

Read More
After Nutley Closure, Roche Picks NYC For East Coast R&D Site
Sep20

After Nutley Closure, Roche Picks NYC For East Coast R&D Site

Just months after announcing it would close its storied Nutley, N.J., R&D site, Roche said today that it will open a translational clinical research center at New York City’s Alexandria Life Sciences Center. The move means three big pharma firms will soon be enjoying a view of the East River: Lilly was the flagship tenant when two years ago it moved some 140 scientists from ImClone’s lower Manhattan labs into the sparkling new site. Pfizer later chose the Alexandria center for the New York hub of its Centers for Therapeutic Innovation, a unit that teams Pfizer scientists with academic scientists. When Roche said it was shutting down the Nutley site, it said it was in search of an East Coast location for a much smaller research footprint. Some had initially speculated that Cambridge, Mass., would be the obvious choice for Roche, as most pharma companies have shifted their main East Coast R&D to the Boston area. More recently, it emerged that Roche was deciding between two locations in NY and N.J. Today’s release indicates that Roche plans to stick around N.Y. for awhile: it has signed an 11-year lease at the Alexandria Center. Does this mean NYC, which has long struggled to attract pharma and biotech researchers to its fair streets, is starting to see some momentum in the life...

Read More
Sanofi’s MS Pill Aubagio Wins FDA Approval
Sep13

Sanofi’s MS Pill Aubagio Wins FDA Approval

Another pill for multiple sclerosis has gotten FDA’s stamp of approval. Sanofi’s Aubagio is expected to hit the market in a few weeks, making it only the second oral drug available to people with MS. Novartis’ MS pill Gilenya, which works by a different mechanism of action than Aubagio, has been on the market for two years. Aubagio will cost roughly $45,000 a year, strategically priced below the leading MS drugs on the market. As Leerink Swann analyst Seamus Fernandez pointed out today in a note, that puts it at about 6.5% lower than Teva’s Copaxone, 8% less than Biogen Idec’s Avonex, and 28% below the price of Gilenya. “We continue to be surprised by the magnitude of price increases within the MS market overall and view Sanofi’s slight discount as reasonable,” he added. As we described back in 2009, MS is a problem of an immune system gone awry, with lymphocytes first attacking myelin, the protective sheath on nerve fibers, and eventually breaking down the fibers themselves. The first wave of MS drugs—beta-interferons like Avonex and Copaxone–intercept T-cells to slow down the body’s immune response. But that approach is promiscuous—the beta-interferons also prompt widespread gene expression, and cause flu-like side effects. The latest wave of MS treatments take a more refined approach to reining in the immune system. Biogen’s Tysabri, for example, blocks alpha-4-beta-1 integrin, which signals immune cells to leave the bloodstream and enter the brain and spinal cord. Gilenya keeps some T-cells out of the bloodstream by binding to sphingosine-1-phosphate receptor, thereby preventing some white blood cells from leaving the lymph nodes. Aubagio, meanwhile, inhibits dihydroorotate dehydrogenase, a critical enzyme in the synthesis of pyrimidine, which activated white blood cells need to survive. Whereas the beta-interferons have a sweeping effect on the immune system, some pathways are maintained with Aubagio’s activity. Aubagio has a few advantages over Gilenya and Tysabri: namely, it does not carry the same safety risks associated with those drugs (see here and herefor more on that), and is taken orally just once a day. But Aubagio also has its downsides. On the efficacy front, its milder interaction with the immune system renders it less effective than the more hard-hitting treatments. And it can cause hair loss and birth defects, a serious limitation for women of childbearing age—as Fernandez points out in his note, a large population in the MS...

Read More